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In brief

Phylogenetic constraint can be inferred
from patterns of co-evolution typically
discarded as noise (Spectral Tree). The
Spectral Tree of the kihngdom Bacteria
reveals the presence of extensive
subspecies phylogeny among human gut
strains and aids in relating genotype with
phenotype. Our findings motivate
defining strains according to their inferred
co-evolutionary constraint.

¢ CellP’ress


mailto:araman@bsd.uchicago.�edu
https://doi.org/10.1016/j.cels.2024.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2024.12.008&domain=pdf

Cell Systems

¢? CellPress

OPEN ACCESS

Subspecies phylogeny in the human gut revealed
by co-evolutionary constraints across the bacterial

kingdom

Benjamin A. Doran,"-2 Robert Y. Chen,® Hannah Giba,"-* Vivek Behera,® Bidisha Barat,’ Anitha Sundararajan,’
Huaiying Lin," Ashley Sidebottom,’ Eric G. Pamer,'-°> and Arjun S. Raman:6.7>*

'Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA

2Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA

3Department of Psychiatry, University of Washington, Seattle, WA 98195, USA

“Department of Pathology, University of Chicago, Chicago, IL 60637, USA

5Department of Medicine, University of Chicago, Chicago, IL 60637, USA

8Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA

7Lead contact
*Correspondence: araman@bsd.uchicago.edu
https://doi.org/10.1016/j.cels.2024.12.008

SUMMARY

The human gut microbiome contains many bacterial strains of the same species (“strain-level variants”) that
shape microbiome function. The tremendous scale and molecular resolution at which microbial communities
are being interrogated motivates addressing how to describe strain-level variants. We introduce the “Spec-
tral Tree”—an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater
than 7,000 diverse bacteria. Using the Spectral Tree to describe over 600 diverse gut commensal strains that
we isolated, whole-genome sequenced, and metabolically profiled revealed (1) widespread phylogenetic
structure among strain-level variants, (2) the origins of subspecies phylogeny as a shared history of phage
infections across humans, and (3) the key role of inter-human strain variation in predicting strain-level meta-
bolic qualities. Overall, our work demonstrates the existence and metabolic importance of structured phylog-
eny below the level of species for commensal gut bacteria, motivating a redefinition of individual strains ac-
cording to their evolutionary context. A record of this paper’s transparent peer review process is included in

the supplemental information.

INTRODUCTION

Microbial communities (“microbiomes”) are ubiquitous across
diverse environments, spanning oceans to individual humans.'™
One microbiome relevant to human health is the gut microbiome:
the trillions of microorganisms residing along the intestinal tract
of humans.®® A number of studies have demonstrated the signif-
icance of the gut microbiota—the bacteria within the micro-
biome—for influencing host physiology and predilection for
developing several diseases.” This has led to many efforts
describing the composition of human gut microbiotas and un-
derstanding how composition affects microbiome function. As
interrogating microbiomes has become easier, the incredible
taxonomic complexity of microbiotas and associated functional
consequences have become more appreciated than ever
before.®°

Studies focused on cataloging microbiota composition have
revealed the extensive presence of strain-level variants: strains
that belong to the same species but are genetically different.’®"2
Moreover, several case studies have highlighted the direct

L)

impact of individual strains on gut microbiome function and
host health. For instance, reconstitution of the infant gut micro-
biota using Bifidobacterium longum subspecies infantis—a
strain of B. longum that metabolizes human milk oligosaccha-
rides—has been shown to repair intestinal inflammation due to
acute malnutrition in humans.'®>™'® In another example, profiling
different strains of Bacteroides ovatus showed differential ca-
pacity in inducing immunoglobulin A levels.'® With respect to in-
fluence on bacterial fitness in the gut, interrogation of Bacter-
oides and Parabacteroides strains revealed strain-level
preferences for binding polysaccharides.'”” Many similar vi-
gnettes, from understanding the etiology of food-borne out-
breaks to characterizing the repair of the gut microbiota
following antibiotic exposure, have highlighted the functional
role of strain-level variants.'®"?

As the functional importance of bacterial strains has become
increasingly appreciated, an outstanding question is how should
an individual strain be described? If considering complete ge-
nomes at amino acid resolution, almost every newly procured
strain is a strain-level variant because it is likely to be different
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in some way from other strains of the same species. If instead the
whole genome is compressed into a more practically manage-
able description, like the 16S rDNA sequence or sets of marker
genes, strains become collapsed into their phylogenetic descrip-
tion obscuring potentially important adaptive changes that make
strains of the same species functionally different from one
another. With respect to classifying strains by biological func-
tion, recent studies that created banks of sequenced and pheno-
typed gut bacterial strains have shown a common trend: pheno-
typic differences between strains of the same species are
difficult to understand.?°%? As an example, it has been shown
that metabolic capacities of bacteria follow coarse phylogeny
but that variation among individual strains within a species is
mostly unrelated to metabolic variability.>° Collectively, these
observations have led to the status quo strategy to functionally
interrogate each and every new strain because structure
amongst strain-level variants, i.e. “subspecies phylogeny,” is
difficult to ascertain and unlikely to be associated with strain-
level phenotype.

A key limitation of performing comparative analysis on strain-
level variants within strain banks is the tremendous degree of
phylogenetic under-sampling compared with the bacterial tree
of life. Strain banks usually contain strains from a specific eco-
niche—only from the human gut for instance—and therefore
reflect a small portion of phylogenetic diversity. While carefully
curated reference trees of bacteria have been suggested as con-
structs to address phylogenetic limitations of strain banks, these
trees are often also subset to strains from the specific econiche
of interest. This limitation skews our understanding of gene con-
tent that is under selective pressure and likely associated with
conserved phenotypes versus gene content that is allowed to
vary and likely associated with the ability to adapt to different
econiches.®

The existence of large databases of sequenced bacteria moti-
vated a hypothesis that we tested here. Namely, that by
leveraging the vast diversity of sequenced strains procured
from many different environments in an unbiased way, we could
better resolve evolutionary relationships. That is, constraints
gleaned from the evolutionary record across the kingdom Bacte-
ria could be used as a Bayesian prior for contextualizing differ-
ences between strains procured from a single environment—
the human gut.>*?® If achieved, this space of evolutionary
relationships may (1) resolve fine-grained differences between
strains of the same species, (2) allow testing whether phenotypic
qualities specific to strain-level variants could be learned from
genetic information, and (3) be a general construct for character-
izing bacterial strains that could be dynamically updated as more
strains are collected and sequenced.

We created a strain bank of 669 gut commensal strains that
were isolated from fecal samples collected across 28 healthy hu-
man donors, whole-genome sequenced, and metabolically pro-
filed. Consistent with previous studies, traditional analysis of this
strain bank using 16S rDNA sequence, and well-known, stan-
dard sets of marker genes could not resolve genomic differences
between strain-level variants or their associated metabolic qual-
ities. We therefore developed an approach for inferring evolu-
tionary distance between bacteria based on patterns of genomic
covariation. Key to developing our approach was the theoretical
finding that the whole spectrum of principal components (PCs)
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(“eigenspectrum”) measured across extant diversity, including
components typically discarded as noise, encoded a tree of
relatedness that matched how two species co-evolve through
sequential diversifications. Thus, covariation among extant di-
versity reflected constraints on co-evolution (“co-evolutionary
constraint”). As our statistical approach was computationally
fast, we applied it across >7,000 non-redundant bacterial pro-
teomes isolated from many diverse environments to form a
Spectral Tree of bacterial relatedness. We found that the Spec-
tral Tree closely resembled known patterns of bacterial phylog-
enies. Examining our strain bank within the structure of the Spec-
tral Tree revealed widespread subspecies phylogeny across gut
commensal strains. Functional analysis showed that subspecies
phylogeny was driven by a history of host phage exposure
among groups of donors and was associated with a loss of
well-conserved, biologically important genetic machinery.
Finally, we used the Spectral Tree to predict strain metabolic ca-
pacity, finding that sampling strain-level variants among different
donors (inter-donor) was key for building accurate predictive
models of metabolism compared with strain-level variants pro-
cured from the same donor (intra-donor). We found this result
was due to "inter-donor" strain-level genomic differences being
substantially greater than "intra-donor" strain-level genomic
differences.

Together, our findings demonstrate the existence of function-
ally significant subspecies bacterial phylogeny in the human gut
revealed from analysis of co-evolution across the bacterial
kingdom. Our work motivates a reparameterization from strain
genomes to describing strains by their evolutionary context.

RESULTS

A bank of 669 metabolically profiled human gut
commensal strains

We isolated and sequenced over 1,000 commensal bacterial
strains from the feces of 28 healthy human volunteers. Our re-
sulting bank of gut commensal strains (“commensal strain
bank” from here on) comprised 669 diverse strains that we
whole-genome sequenced (Figure S1A; Table S1) (STAR
Methods). The commensal strain bank was enriched for gram-
negative anaerobes within Lachnospiraceae, Bacteroidaceae,
and Bifidobacteriaceae families (Figure S1B). We created phylo-
genetic trees of our strain bank defined by (1) the 16S rDNA
sequence and (2) 120 proteins used to create the phylogenetic
relationships in  Genome Taxonomy Database (GTDB)
(“Bac120”)—the state-of-the-art database widely used for
phylogenetic determination of bacterial strains (STAR
Methods).?® We found that both phylogenetic trees robustly
defined coarse phylogenetic differences but were unable to
resolve differences between strains belonging to the same spe-
cies (Figure S1C).

We also metabolically profiled all strains within the strain bank
across 50 targeted metabolites comprising amino acids, aro-
matics, branch-chained fatty acids, indoles, phenolic aromatics,
and short-chain fatty acids (SCFAs) (Table S2) (STAR Methods).
Metabolite concentrations relative to a standard in media (Brain
Heart Infusion media supplemented with cysteine [BHIS]) without
bacterial culture were measured. These metabolites were chosen
to be profiled because they reflect particularly salient metabolites
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with respect to commensal bacterial fitness, human gut micro-
biome function, and interaction of the microbiome with the
host.?”?® Moreover, unlike other molecular signatures that are
important but unable to be resolved at sufficiently high resolution
for quantitative comparative studies like complex polysaccha-
rides, each of these metabolites was associated with a unique
mass-to-charge ratio, thereby facilitating comparative metabolo-
mics. We found extensive variation among the metabolic capac-
ity of strains from the same species (Figures S1D and S2).
Together with the inability of canonical phylogenetic analysis to
resolve strain-level variation, our findings were consistent with
previously published studies illustrating the difficulty in relating
strain-level variants with their metabolic capacity.?®

Defining evolutionary distance using spectral inference
To test our hypothesis that evolutionary relationships across a
wealth of sequenced bacteria could aid in revealing strain-level
genomic differences within our strain bank, we turned to a large
database of sequenced non-redundant bacterial strains pro-
cured across a diversity of environments. Previous work from
our laboratory described a phylogenomic analysis of the
kingdom Bacteria using all reference proteomes in the UniProt
database (>7,000 strains in total).”®*° Analysis of this database
illustrated that co-evolutionary patterns of proteome variation
defined a hierarchy of phylogeny. Major PCs clustered bacteria
belonging to the same phylum, deeper components class, and
so on until species. Building upon this finding, we reasoned
that the whole PC spectrum of bacterial co-evolution defined
across the UniProt database, including PCs typically discarded
as noise, may be useful for inferring evolutionary distances be-
tween bacteria and resolve fine-grained differences between
strains of the same species. This idea motivated creating a
metric of evolutionary distance between extant taxa based on
statistical patterns of proteome co-evolution.

Developing a definition of evolutionary distance inferred from
patterns of bacterial co-evolution first required studying simple,
manageable models of the evolutionary process. Thus, we used
“toy model” simulations of diversification and selection to
explore how PCs could be used to define an evolutionary dis-
tance metric between taxa that are represented by a complex
set of features, like a genome. An example of one such model
is shown in Figure 1A. Here, a “parent” (root) was defined by a
set of features (“genotype”) and was subject to sequential,
layered diversifications to create an alignment of taxonomic di-
versity. Traditionally, evolutionary simulations are performed us-
ing nucleotide identities (adenine [“A”], thymine [“T”], cytosine
[“C”], guanine [“G”]) as the basis of variation. In our model, we
defined the basis of variation to be “A”/“T” for simplicity, and
we also encoded “A” as a “0” and “T” as a “1” basis so that
quantitative analysis could be performed on the model. The
resultant alignment was then subject to principal-component
analysis (PCA) (Figure 1B). The output of PCA is a spectrum of
“PCs” ordered by statistical scale: PC1 harbors the most
amount of data variance, PC2 the second-most, and so on.
Each taxon of the alignment and each feature describing a taxon
contribute to each PC to a certain extent.

In general, the shallowest PCs (PC1, PC2, and PC3, for
instance) are thought to contain relevant signal while deeper
PCs are typically discarded as statistical noise. Our analysis of
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the alignment in Figure 1A illustrated a different finding. The
taxa arising from a common broad layer of diversification
contributed similarly to the first two PCs, while those arising
from common finer layers of diversification (the second and third
diversifications) contributed similarly to shallow as well as
deeper PCs (Figure 1C). We therefore defined a metric termed
“spectral distance” between two taxa:

SDf = [Pk~ P

f (Equation 1)
where Pf is the contribution of taxon i onto PC k and Pf is the
contribution of taxonj onto PC k. Plotting the cumulative spectral
distance across all PCs, including those harboring a minutia of
data variance (~1%), defined a tree-like hierarchical pattern of
statistical similarity between taxa (Figure 1D). Moreover, we
found that sequential PCs collectively described different layers
of precedent diversifications. For instance, for the example
shown in Figure 1A, PCs 5-8 harbored the same amount of
data variance and collectively described the third layer of diver-
sification from the parent, as observed in taxa “a” and “b” being
maximally differentiated along PC7 (Figures 1C and 1D). Simi-
larly, PCs 3 to 4 harbored the same amount of data variance
and described the second layer of diversification from the
parent, as observed in taxa “a” and “b” being maximally differ-
entiated from taxa “c” and “d” along PC4 (Figures 1C and 1D).
PCs 1 and 2 independently described the root and the first layer
of diversification, respectively. The result from Figure 1D moti-
vated grouping PCs into “spectral groups” that harbor the
same percent data variance and then computing spectral dis-
tance across the spectral groups (Figure 1E, left) (STAR
Methods). Hierarchical clustering of the resulting pairwise spec-
tral distances across all taxa yielded a tree of taxonomic related-
ness that we termed a Spectral Tree (Figure 1E, right). We found
that for the case in Figure 1A, the Spectral Tree matched existing
approaches of phylogenetic inference spanning maximum-likeli-
hood and Bayesian methods (Figure 1F). The exception to this
finding was Mr. Bayes, which resulted in a star-like pattern of in-
ferred relatedness likely due to the limited size of the alignment.

We next tested whether Spectral Trees resulted in accurate
taxonomic relationships across (1) different sizes of alignments
and (2) different numbers of genotypic features used to describe
each system in the alignment. Synthetic phylogenetic histories
were created in silico, Spectral Trees were generated from the
alignment of taxa for each synthetic dataset, and a measure of
how accurately the resulting Spectral Tree captured the phyloge-
netic history in the dataset was then computed (STAR Methods).
We found that for much of the parameter space we analyzed, the
Spectral Trees closely resembled the ground-truth pattern of
sequential diversifications (Figure S3). The exception to this trend
was in the limit where the number of features was less than the
number of taxa, in which case the Spectral Tree did not match
the ground-truth tree. This is because in the regime where taxa
outnumber the features used to describe taxa, the number of fea-
tures describing each taxon is limited compared with the diversity
of taxa available for sampling. As such, the information content of
the set of features is “overwritten” by the diversity of taxa, thereby
erasing patterns of covariation originating from phylogenetic his-
tories—a scenario that the Spectral Tree is not designed to
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Figure 1. Defining a Spectral Tree from extant diversity: An example using a toy model

(A) An in silico model of sequential diversification. An ancestral “root” is defined by a 14-bit string of “1.” Diversification through three generations creates an
alignment of eight “taxa.” Colored bits in the alignment match the color of the generation "F1," “F2,” or “F3” at which variation from a “1” to a “0” was introduced.
(B) PCA of the alignment in (A) yields eight PCs. Percent variance harbored by each PC is shown.

(C) Contributions of each taxon in the alignment from (A) to each PC.

(D) Cumulative spectral distance (y axis) for all pairs of taxa that include taxon “a

.” The pattern of cumulative spectral distances resembles a tree-like distribution.

(E) PCs are grouped together based on their percent variance into "spectral groups.” For each spectral group, spectral distances are computed between all pairs
of taxa. Spectral distances between all pairs of taxa for each spectral group are displayed and black to blue pixel colors indicate low to high spectral distances.

This information is used to create a rooted Spectral Tree.

(F) Unrooted trees resulting from phylogenetic inference methods applied to alignment in (A).

capture. A biological process consistent with this regime is when
the recombination rate is extremely high relative to speciation
events—a scenario that has been put forth as a plausible explana-
tion for bacterial phylogenomic trends.®"

Spectral Trees resolve convergent paths of
diversification

Our results motivated characterizing situations in which Spectral
Trees were distinct from current methods of phylogenetic infer-
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ence. Analysis of Spectral Trees across a diversity of alignments
illustrated that Spectral Trees were qualitatively distinct
compared with existing methods of phylogenetic inference in
cases of convergent processes. Convergent evolution involves
two or more taxa possessing the same set of genomic traits
through independent ancestral histories. These convergent his-
tories vastly complicate phylogenetic inference because
genomic diversity no longer increases in a predictable manner
over evolutionary time. Disentangling evolutionary convergence
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Figure 2. Spectral Trees resolve patterns of convergent diversification

(A) The root (F0) is defined by a 9-feature genotype of “1” and subject to three sequential diversification events (F1, F2, and F3), resulting in 18 taxa, and features
can be either “1” or “0.” Colored features in each generation correspond to variation from the previous generation.

(B) Scree plot of nine PCs describing alignment in (A).

(C) Rooted Spectral Tree, unrooted trees resulting from FastME and PhyML.

(D) Alignment of taxa with position 5 highlighted, and taxa are labeled by the group they belong to within the F1 generation (red or blue bar).

(E) Shared information (cumulative mutual information [MI], y axis) between clustering of taxa across sets of PCs (x axis) and clustering defined at the F1 or F2
generations (legend).

(F) Isolation of information contained in PCs 5 through 8 using singular value decomposition (SVD).

(G) Recreated alignment considering information contained only in PCs 5 through 8 with position 5 highlighted. Taxa are labeled in the same manner as (D).

statistically is particularly problematic when using single features To understand why Spectral Trees were effective at dealing
(i.e., “gene markers”) to model ancestral distance because such  with evolutionary convergence, we interrogated a paradigmatic
approaches, like maximum-likelihood or Bayesian methods, do example of a representative trajectory (Figure 2A). In this
not explicitly consider pairwise or higher-order epistasis be- example, the ancestral root (“FO”) was followed by three
tween genes and the resulting complex contextual dependence  sequential sets of diversifications leading to 18 diverse taxa.
of gene presence or absence on other genes.*? We found that the Spectral Tree of taxa correctly captured the
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Figure 3. A Spectral Tree of 7,047 bacteria from UniProt

(A) Workflow for computing a Spectral Tree across all non-redundant bacterial strains within UniProt (n = 7,047).
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generative set of diversifications spanning the F1 and F2 gener-
ations, while application of other methods (FastMe and PhyML)
did not (Figures 2B and 2C).

To better understand this result, we analyzed how features in
the alignment were contributing to each PC. As an example, we
considered position 5 in the alignment (Figure 2D). Position 5 was
a “0” for all taxa arising from the top branch of F1 and a “0” for
one-third of taxa arising from the bottom branch of F1. Thus, two
separate contexts evolved independently, resulted in a “0” at
position 5—an example of convergence. Using position 5 as a
marker would therefore lead to an incorrect grouping of taxa
arising from different histories together. This is a commonly
encountered problem when considering each genomic feature
in isolation of its genetic context. Generalizing this concept, for
all positions in the alignment shown in Figure 2A, no single posi-
tion was sufficient to describe a single diversification event.

Given this finding, we sought to elucidate where information
regarding the different generations of diversifications lay across
the set of PCs (STAR Methods). We found that the shallowest
PCs were enriched for information regarding a shared history
at the F1 generation, while the deepest set of PCs were enriched
for information regarding a shared history at the F2 generation
(Figure 2E). We then recreated the alignment using only informa-
tion contained within the deepest PCs (Figure 2F) (STAR
Methods). Focusing on position 5 again, we found that the value
of position 5 was adjusted in the recreated alignment reflecting
the separate, nested contexts of diversification (Figure 2G).

Historically, eigendecomposition—the spectral factorization
technique underlying PCA—has been used as a form of dimen-
sion reduction: analyze only the shallowest PCs for significant
biological trends. This use of PCA has stemmed from application
of random-matrix theory (RMT) to biological data.*® Our findings
provide a contrasted result, demonstrating that the whole ei-
genspectrum (spectrum of PCs resulting from PCA) can encode
a Spectral Tree and that the tree is the more complete dimen-
sion-reduced object. Through a detailed mathematical analysis,
we found that the formation of hierarchy as represented in a
Spectral Tree is guaranteed from performing eigendecomposi-
tion on related populations (supplemental experimental proced-
ures Section 1) (Figure S4). Specifically, the deep PCs contain in-
formation that is nested within shallower PCs. Therefore, the
qualities we found regarding convergent processes are not spe-
cific to the toy model in Figure 2A but rather are general proper-
ties of using the eigenspectrum to create trees of relatedness. A
more detailed explanation of comparing standard methods of
phylogenetic inference with creating Spectral Trees using eigen-
decomposition can be found in supplemental experimental pro-
cedures Section 2.

The Spectral Tree built from 7,047 bacterial strains in
UniProt reflects known phylogenetic patterns

We sought to create a Spectral Tree for a large diversity of non-
redundant bacterial strains representative of the kingdom

¢ CellP’ress

OPEN ACCESS

Bacteria. We turned to the UniProt non-redundant database
comprised of 7,047 strains for this task. To represent bacterial
diversity in a more unbiased and complete manner compared
with 16S or the set of Bac120 gene markers used to define
GTDB, we annotated each bacterium by its orthologous gene
group (OGG) content. OGGs are groups of proteins defined by
the conservation pattern of their amino acid sequences and
have been used previously for phylogenomic comparisons in
bacteria.®®***> Qur strategy resembles that of pan-genomic
analysis in analyzing the abundance of information within both
“core” and “accessory” genomic regions.

We first tested whether building a Spectral Tree across thou-
sands of reference proteomes in the UniProt database would
be computationally feasible. We selected members of the class
Bacteroidia (n = 211), order Oceanospirillales (n = 103), family
Rhodospirillaceae (n = 50), and genus Ruminococcus (n = 25) an-
notated with 10,177 OGGs and found that computing a Spectral
Tree required substantially less computational resources than
existing methods of phylogenetic inference (Figure S5). This
result motivated computing a Spectral Tree across thousands
of non-redundant taxa—a goal that is not practically feasible
with current approaches.

We constructed a Spectral Tree for the set of non-redundant
bacterial proteomes in UniProt using an alignment of 7,047 bac-
teria annotated by their OGG content (Figure 3A; Table S3)
(STAR Methods). Analyzing the Spectral Tree at the level of
phylum showed that generally, groups of bacteria belonging to
the same phylum clustered together. Phyla that were consis-
tently monophyletic across GTDB and NCBI, such as Actinobac-
teria and Cyanobacteria, remained monophyletic in the Spectral
Tree (Figures S6A and S6B).”%*° Additionally, phylogenetic rela-
tionships between phyla were maintained. For instance, the Ten-
ericutes were placed between Proteobacteria and Firmicutes—a
phylogenetic relationship that has been previously described
and represented in bacterial phylogenetic trees.?®* In another
example, GTDB reclassified Proteobacteria from NCBI into
Pseudomonodota and Desulfobacteria.’® The Spectral Tree
captured this reclassification (Figure S6C). However, there
were notable instances where clusters of bacteria deviated
from their known phylum-level designation. First, there were
two groups of Firmicutes that were separated from each other
and from the main group of Firmicutes. These two outgroups
are the order Bacillales. This split is partially supported by
GTDB'’s reassignment of the class Bacilli to phylum Bacilliota.
The exception in our Spectral Tree is that the order Lactobacil-
lales is considered to be more related to the main group of Firmi-
cutes. Second, within the phylum Bacteroidetes, we observed
two major separated classes—Flavobacteriia and Cytophagia.
Third, we found the placement of bacteria belonging to phyla
with representation of less than 100 total members was enriched
in proximity to Bacteroidetes relative to other major phyla like Ac-
tinobacteria, Firmicutes, and Proteobacteria. These observa-
tions and discrepancies with respect to NCBI classification are

specific bacterial proteome. Gray box outlines the three computational steps for creating a Spectral Tree from D°%C. Spectral Tree is shown with leaves (each of

the 7,047 bacteria) colored by phylum per NCBI.

(B) Information shared between clusters of the Spectral Tree, ordered from shallow to deep (x axis), and phylogenetic classification. Shallowest Spectral Tree
clusters are enriched for grouping bacteria together by phyla, deepest clusters by species.

(C) Zoom-ins of Spectral Tree at specific bacterial families.
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likely due to two factors: (1) the Spectral Tree was built from OGG
frequency across the entire proteome rather than considering
conserved marker genes and (2) our statistical framework incor-
porates and leverages epistasis between OGGs.

We next performed a systematic analysis of the phylogenetic
distribution of bacteria across the Spectral Tree. To do this, we
measured the mutual information between shared tree depth in
the Spectral Tree and shared phylogeny (STAR Methods). This
analysis revealed how much information about phylogenetic re-
lationships was captured by respecting the clustering of bacteria
created by the Spectral Tree. Our results showed that the topol-
ogy of the tree matched a hierarchy of phylogeny: shallow to
deep Spectral Tree clusters progressively grouped bacteria
from the same phylum, class, order, family, genus, and species
(Figure 3B). Moreover, zooming-in on specific bacteria belonging
to families that are common in the human gut illustrated that the
Spectral Tree captured known phylogenetic relationships at the
species level (Figure 3C). Thus, while we observed certain ex-
ceptions to canonical phylogenetic classifications, overall the
Spectral Tree recapitulated known evolutionary relationships
across thousands of bacterial strains.

Using the Spectral Tree to resolve subspecies
phylogeny within our strain bank

The Spectral Tree of relationships built using bacterial strains
comprising the UniProt database was a statistical space that
captured known evolutionary relationships. In this sense, we
conceptualized the Spectral Tree as an evolutionarily relevant
“latent space” —an abstract space where distance between ob-
jects scales with a desired property. In our case, the objects are
bacterial proteomes, and the desired property is evolutionary
relatedness. Using this conceptualization, new strains could be
projected into the latent space thereby making the Spectral
Tree a dynamic object capable of incorporating more strains to
reflect the increasing corpus of bacterial sequencing data. We
therefore saw this as an opportunity to characterize our gut
commensal strain bank using the Spectral Tree.

We annotated all strains in our strain bank by their OGG content
and projected each strain into the Spectral Tree (Figures 4A, S7,
and S8; Table S4) (STAR Methods). We compared the distances
of all pairs of strains in our strain bank that share the same genus
or species designations computed from (1) the Spectral Tree, (2)
the phylogenetic tree created from the 16S rDNA sequence, or (3)
the phylogenetic tree created from Bac120. We found that for
pairs of strains from the same species, the Spectral Tree uniquely
resolved differences between our strains: the average relative
distance of strain pairs based on 16S and Bac120 trees was
zero, while the same distribution based on the Spectral Tree
was bimodal (Figure 4B). We also found that creating a Spectral
Tree of the commensal strain bank without considering the
UniProt database yielded significantly less separation of strains
at phylogenetic scales that were coarser than species-level des-
ignations (Figure S9). Collectively, these results suggested that
using the Spectral Tree built from the UniProt database as a latent
space for characterizing bacteria-resolved phylogenetic relation-
ships, from broad to subspecies-level phylogenetic differences,
between strains in our commensal strain bank.

We next sought to interrogate the structure of strain-level vari-
ation within the Spectral Tree. Focusing on the group of 41 Med-

8 Cell Systems 16, 101167, February 19, 2025

Cell Systems

iterraneibacter gnavus strains in our strain bank, we found that
the Spectral Tree defined phylogenetic structure through spe-
cies-level designation but also showed statistically significant
non-random clustering among strain-level variants. Notably,
we found a direct relationship between the structure of strain-
level variation and donors from which strains were collected (Fig-
ure 4C, upper). In another example, the 27 strains of Bacteroides
uniformis illustrated the same trend of being clustered by donor
origin (Figure 4C, lower). This result suggested that the Spectral
Tree was defining subspecies phylogenetic structure based
on proteome differences in strains associated with individual
donors.

To test the generality of this result across the entire
commensal strain bank, we computed the mutual information
between strain clusters defined across the Spectral Tree and
whether the clusters shared the same phylogenetic designation
or donor origin. We found that the pattern of strain clustering
across the tree reflected a distinct biological order: shallow clus-
ters reflected broad phylogenetic differences, deeper clusters
reflected finer phylogenetic differences, and the deepest clus-
ters reflected variation between strains of the same species
but isolated and cultured from different donors (Figure 4D).

Thus, our results illustrated two related findings. First, the
Spectral Tree revealed a phylogenetic structure present below
the level of species. Second, this subspecies phylogenetic struc-
ture was associated with diversification in the econiche of
different humans.

In totality, the Spectral Tree contained 41 layers. The layer at
which subspecies phylogeny was defined was layer 26 (Fig-
ure 4D). As the Spectral Tree was built from >7,000 PCs span-
ning over 10,000 OGGs, we sought to understand how the Spec-
tral Tree organizes the vast genomic information used as input.
To delineate the pattern of OGGs that define hierarchical rela-
tionships in the Spectral Tree, we identified OGGs that were
significantly differentially abundant between daughter branches
of a given cluster (Figure S10). Interrogating the pattern of
OGGs across clusters in the Spectral Tree, we found that the
Spectral Tree is organized through nested genomic variation.
For instance, variation in OGGs defining the second layer of
the Spectral Tree was nested within OGGs whose variation
defined a cluster in the first layer. This hierarchical pattern
continued until the last layer of the tree (Figure S11A). Crucially,
this property of nestedness enabled explicitly identifying
genomic differences that distinguished clusters of strains—a
property we used to functionally characterize subspecies phy-
logeny as described next (Figure S11B).

Functional and evolutionary characterization of
subspecies phylogeny

What are the origins of structured phylogeny below the level of
species? We used the Spectral Tree to better understand drivers
of subspecies phylogeny within our strain bank. As an example,
our strain bank contained 20 strains of Eubacterium rectale (also
called Agathobacter rectalis) collected from several donors. We
isolated the Spectral Tree branch that separated different groups
of E. rectale strains. As expected per our results in Figure 4D, the
groups of strains clustered by donors from which they were iso-
lated (MSK17 and MSK22 versus MSK16, MSK13, and MSK9;
“MSK” stands for Memorial Sloan Kettering, one of the hospitals
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Figure 4. The Spectral Tree reveals subspecies phylogeny in commensal strain bank

(A) Workflow for projecting commensal strain bank into the Spectral Tree (see Figure S7 for detailed steps).

(B) Distributions of relative distances for all strain pairs in the commensal strain bank that are of the same species. Relative distance is defined by either (1) the
Bac120 phylogenetic tree (top), (2) the 16S phylogenetic tree (middle), or (3) the Spectral Tree (bottom).

(C) Following strains of M. gnavus (upper) and B. uniformis (lower) from shallow to deep branches of the Spectral Tree. Each leaf is a strain colored by the identity
of the human donor from which the strain was collected (see color key, MSK indicates donor from Memorial Sloan Kettering Hospital, and DFI indicates donor

from Duchossois Family Institute, University of Chicago).

(D) Information shared between phylogenetic designation (NCBI or GTDB database) or donor origin and depth of strain cluster in Spectral Tree (x axis). Tree depth
at which 50% of cumulative information regarding shared donor identity is delineated (brown).

from which donors were recruited and fecal samples were iso-
lated) (Figure 5A). Differences in OGGs between the strains of
E. rectale illustrated a pattern of mutually exclusive presence
or absence. Strains isolated from donors MSK22 and MSK17
harbored gene groups associated with directed motility, with
many gene groups encoding structural elements of the flagellum,
chemotaxis machinery, and associated signaling cascades. In
contrast, strains derived from MSK13 and MSK9 lacked many
gene groups encoding components of motility and instead con-
tained gene groups associated with the presence of phage—
phage plasmid primase activity, DNA methyltransferase activity,

and type | restriction modification. Strains from MSK16 were
unique, and these strains harbored a subset of gene groups
associated with motility but also several gene groups associated
with the presence of phage. Collectively, the pattern of gene
group presence/absence defined by the Spectral Tree distin-
guished E. rectale strains hierarchically. Strains from MSK22
and MSK17 were more like each other than strains from
MSK16, MSK13, and MSK9, and strains from MSK13 and
MSK9 were more similar than strains from MSK16.

The statistically deduced patterns of gene group presence/
absence motivated testing E. rectale isolates from these donors
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Figure 5. Functional and evolutionary characterization of subspecies phylogeny
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they were isolated (MSK indicates Memorial Sloan Kettering Hospital). Number in parenthesis below each donor is number of strains. Heatmap shows gene
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for their motility. Isolates were tested for their ability to swim in
BHIS media (STAR Methods). Six strains, three from each major
cluster in Figure 5A, were grown anaerobically for 48 h, vortexed,
then observed for 180 min (Figure 5B, top). After 24 h of growth,
cultures inoculated from strains of MSK22 and MSK17 were uni-
formly turbid, illustrating the robust motility of E. rectale strains,
while those inoculated with strains from MSK9 exhibited a large
pellet with clear inoculum. The culture inoculated with strains
derived from MSK16 exhibited a phenotype following their
pattern of OGG presence/absence—pellet formation with uni-
form turbidity—illustrating the compromised ability to swim,
likely due to the absence of the basal body and other key flagellar
and motility components (Figure 5B, middle). The ODgog mea-
surements of each culture after vortex were in accord with the
phenotypes expected from the pattern of gene group pres-
ence/absence for each strain (Figure 5B, lower). Findings in
liquid media were also consistent with motility tests performed
in solid agar (Figure S12). These results demonstrated that the
subspecies phylogeny among E. rectale strains inferred from
the Spectral Tree manifest as biologically significant differences.

A previously published analysis of E. rectale strains demon-
strated that a majority of the clade contained motility genes,
excepting a single European subspecies, thereby illustrating
that motility is a well-conserved trait among E. rectale.*® Thus,
our result suggested that subspecies phylogeny associated
with phage infection may correlate with strain differences in
well-conserved areas of bacterial genomes. We examined the
conservation pattern of the 12 annotated gene groups that
were absent in E. rectale strains isolated from donors MSK16,
MSK13, and MSK9 but present in strains isolated from donors
MSK22 and MSK17 across the entire Spectral Tree. We found
that in the phylogenetic local vicinity of E. rectale, the 12 gene
groups were well conserved, found in 100% of strains. As we
expanded from this vicinity and progressively included more
phylogenetically distant bacteria, we found that the 12 gene
groups maintained their high conservation, spanning a fractional
presence of 20% to greater than 50% across all 7,047 bacteria
within UniProt (Figure 5C). These results highlighted that
phage-related differences among strains associated with varia-
tion among highly conserved E. rectale genes.

We then performed a more systematic analysis, focusing on
five species outside of E. rectale that were represented by
more than 20 strain-level variants where differences among
gene groups were significant with respect to effect size (log-
fold-change greater than 1). These species were B. uniformis,
Phocaeicola vulgatus, M. gnavus, Bacteroides thetaiotaomicron,
and Coproccocus comes, comprising 214 strains in total. We
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found that the most conserved gene groups defining subspecies
phylogeny for all species were related to phage physiology (Fig-
ure 5D, left). Other features included gene groups related to hor-
izontal gene-transfer and inter-cellular competition, among
many other annotations (Table S5). These results were consis-
tent with previous metagenomic-based analyses of subspecies
variation in human gut microbiomes illustrating the importance
of phage in mediating strain-level variation.’” We also found
that the presence of phage elements correlated with the absence
of gene groups that are phylogenetically conserved. We term
“phage-suppressed” OGGs as gene groups whose absence
was shared with the presence of phage-related gene groups.
These groups of OGGs were lost in coordination with the incor-
poration of phage genomic elements. Across all species that
were analyzed, the phage-suppressed OGGs were predomi-
nantly within the top half of gene groups ranked by fractional
abundance across all 10,177 OGGs defining bacterial pro-
teomes in UniProt. Additionally, several phage-suppressed
groups were present in greater than 20% and up to 80% of all
taxa in UniProt (Figure 5D, right), illustrating their broad conser-
vation across the kingdom Bacteria. These results show that
subspecies phylogeny is markedly associated with a shared his-
tory of phage exposure among groups of donors and manifests
as functionally relevant changes in clusters of strains due to vari-
ation among conserved portions of bacterial genomes. Thus, the
origin of subspecies phylogeny in our strain bank was found to
be primarily environmentally driven.

Putting together the results of Figures 4 and 5 illustrated that
the Spectral Tree resolved structured phylogeny below the level
of species in a functionally and evolutionarily relevant manner.
Our findings therefore highlight that the Spectral Tree is a more
complete phylogenetic description of bacterial strains, moti-
vating using the Spectral Tree to explore genotype-phenotype
relationships.

Using the Spectral Tree to understand genotype-
metabolic relationships

We next tested whether the Spectral Tree could be used to relate
the genotype of individual strains with their metabolism—an
important phenotype within the context of the gut ecosystem.
To address this idea, we studied species where there were at
least 20 representative strains in our strain bank for statistical po-
wer. In total, this amounted to 356 strains across 11 species.
Instead of describing each strain by their genome—a standard
approach in evaluating genotype-phenotype relationships—we
coarse-grained the description of strains to their branching
pattern in the Spectral Tree. Since strains are linked in the

(B) Evaluating motility of E. rectale strains derived from different donors. BHIS media is inoculated with strains, grown for 48 h, vortexed, then observed for
180 min. ODggp measurements are taken from the top of the culture. Pictures show cultures of six different strains —three from MSK22 and MSK17 and three from
MSK16 and MSK9—and a negative control of media alone after 24 h of culture. ODgqo (y axis) versus time for each strain in triplicate is shown. Solid lines are
average ODgqg value, contours reflect one standard deviation from average ODgq( value.

(C) The fraction of taxa (x axis) containing the 12 annotated OGGs (circles) absent in MSK16, MSK13, and MSK9 out of all taxa within a given cluster in the Spectral
Tree (y axis). y axis is ordered from the deepest cluster containing the reference E. rectale proteome (top) to the shallowest cluster (bottom).

(D) Left: Spectral Tree for given species. Leaves are labeled by donors from which strains were collected, and number of strains collected for each species
indicated in parenthesis. Text along branches indicate functional annotation of significantly differentially abundant OGGs between daughter clusters. Orange text
indicates annotations associated with phage presence, and black text along daughter cluster indicates functional annotations of OGGs that are absent termed
“phage-suppressed" OGGs. Right: all 10,177 OGGs are ordered by their percentile rank of fractional presence in the UniProt database (x axis) and plotted against
their fractional presence (y axis) (gray distribution). The density of OGGs for a particular percentile rank is shown in the yellow distribution. Phage-suppressed
OGGs—0GGs, which are observed in mutual exclusion of phage-related OGGs—for each species are plotted along the gray distribution in blue circles.

Cell Systems 16, 101167, February 19, 2025 11



¢? CellPress

OPEN ACCESS

Cell Systems

A C
& Y
@ e
. ®9°&c’\ q,"c\O
4 A=100 /7 &QQ@ 4 A=10-064 , 0&
1 / 1 /
abcde R?=0.0 ’ = R*=0.6 ¢ / =
’ w m A. had
’ {a| b1 d} ’1 1 O 1 0 24 /7 :': 24 g 88. thaet;lll;tgomlcron
m—> m{abe >mM11001 , 2 \ 2 Q5 moms
/ © 7/ S @ P wulgatus
. {a’ C} . 10100 04 7/ @ 04 %g ® @ B. luti & wexlerae
. 12 / 2 Q C. comes
6 _g / & S O D. formicigenerans
s —— ] / ° —_—— S @ A. rectale
& 24, g < .24 g < @ M. gnavus
(=] < [ <
S N S N e —_ T
B Acotat 2 2 o0 2 a4 2 0 2 4
cetate
) 2 @b«\\o‘\ RN
Spectral Lineage (log2FC) ] O%C AN E
= & &
Encoding (SLE) @ e%@
DFI.1.247 B. uniformis [110..0001 —> 1.861 < = =
o (32l
DFI.1.135 B. uniformis [110..0010 —> 1.346 n W
: . : e < Acetate
. ' 1890 s £ l0g2FC
MSK.15.40 A. hadrus 101..0100 —» -1. = 2 [ - |
MSK.18.5 Blautia luti 101..1000 —» 2450 3 g 2 0 2
2
MSK.14.58 Blautia luti 101 ...100 0/ — 2.348 E E
7 Tl < <
learned learned SLE
intercept coefficient -2 0 2 4
predicted + Z
Acetate —3=— = W Tii Wi oy Lo
o o Yi 0 R Acetate (out-of-fold prediction)
|/ S~
SLE descriptor of each stra]n
D E o
c
25
= 2 = O
c 2
88 6 se2 0
€ 0 3 c3 &
S E A S o v 05
Z 5 0 . ; oo
1.00 I-IE: 58
.00 4 c o
Butyrate,, g @ 000 10° 10 100
e Phenylacetate_ Tryptamine Q5 A
cetatee. Glycine ”n
ko) sovaleric-Acid®
Q uccinateo 02-Methylbutyrate
4 0.501 Propionatee 05-Aminovalerate F
oAspertate
% Tr)g;tophan Isobutyrate%ysteme OR/alerate 12
< Tyramine roline — —— " Glutamate ©Serine L D
Isoleucine o ooHexanoate o 9
Leucme—vl—" 0 o ©Benzoate Q -8 6
0.001 Phen Ialamne /fThreonln oLysme 1S IS
ethionine /paimitate Ty 2«
-0.25 Amlnmsobutyrate o o ! . 1 . .
o 02 1 0 0.0 0.25 05 0.75 1.0
10 1 0 1 O
A Fraction of branches defining

subspecies phylogeny at LASSO peak

Figure 6. Using the Spectral Tree to relate strain genotype with metabolic capacity

(A) Workflow for defining SLEs for taxa.

(B) Schematic for training LASSO model on SLE designation to predict metabolite concentration, and log, fold-change (log,FC) of acetate concentration relative
to a standard in blank media without bacterial culture shown as an example. Resulting models are termed “SLE-LASSO models.”
(C) Predicted relative concentration for acetate (x axis) versus measured relative acetate concentration (y axis) for 356 strains spanning different species across

decreasing values of LASSO penalty values (2).

(D) (Bottom) Value of LASSO penalty term (2, x axis) versus predictive capacity of SLE-LASSO model adjusted by sparsity of model (adjusted r?, y axis) for each
metabolite (blue curves). Solid yellow dots signify the peak predictive capacity of an SLE-LASSO model for a given metabolite. (Top) Number of models with peak

predictive capacity (y axis) versus value of LASSO penalty term (4, x axis).

(E) Value of LASSO penalty term (x axis) versus the fraction of branches in the Spectral Tree that distinguish subspecies phylogeny used in the SLE-LASSO model
for a metabolite. Gray distribution reflects the collection of SLE models across all metabolites, and black solid line is the average fraction.
(F) Number of models (y axis) versus the fraction of branches in the Spectral Tree defining subspecies phylogeny within the best-performing SLE-LASSO models

(yellow dots in D).

Spectral Tree by a common root, the branching pattern of each
strain could be used as a unique “barcode” of statistically in-
ferred evolutionary lineage. We therefore termed this barcode
a “spectral lineage encoding” (SLE) (Figure 6A). Next, we
reasoned that training statistical models on patterns of SLE de-
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scriptions of strains would be a way to test whether phylogenetic
information could be directly related to metabolic phenotype.
Thus, we trained LASSO models that used the SLE for each bac-
terial strain as input and the relative difference in metabolite con-
centrations for all metabolites that we profiled as output
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Figure 7. Inter-donor variation between strain-level variants drives predictive capacity of SLE-LASSO models of strain metabolism

(A and B) The predictive capacity of SLE-LASSO models when considering a uniform LASSO penalty value across all species for each metabolite (A) or a LASSO
penalty term tuned to optimize the predictive capacity for each species/metabolite pair (B).
(C) Mean predictive capacity of SLE-LASSO models in (A) (“uniform 1”) or (B) (“tuned 1”) averaged across metabolites for each species.

(D) Median predictive capacity for SLE-LASSO models of Blautia luti (left) and Bacteroides thetaiotaomicron (right) strains for each metabolite (dots) where models
were trained using either a uniform LASSO penalty term across all species for a given metabolite (“uniform 1) or a LASSO penalty term tuned for the specific
species/metabolite pair (tuned ). p values between violin plots for each species are computed by a Mann-Whitney rank-order test.

(legend continued on next page)
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(Figure 6B). To ensure an out-of-sample prediction for all strains,
we computed the spectral distance of a randomly chosen 75%
of the 356 strains within the Spectral Tree as a training set.
Next, we assigned SLEs to all strains in the training set, trained
a LASSO model, and validated the LASSO model on the remain-
ing 25% of strains. We then repeated these steps four times
across five different repartitions of the dataset (Figure S13)
(STAR Methods).

Generally, in training LASSO models, a penalty term (also
known as a “regularization parameter”) is used to constrain
the number of coefficients in the resulting model. The larger
the penalty term, the fewer coefficients are used for the predic-
tive capacity of the model. In other words, the penalty term is
used to “coarsen” the model. We found that as the LASSO pen-
alty term was reduced, the SLE-LASSO models became pro-
gressively better at predicting bacterial metabolism at finer
scales of phylogeny. For instance, when training models to pre-
dict acetate metabolism, using a penalty term of 1 collapsed all
predictions onto the acetate concentration averaged across all
strains (Figure 6C, top left). As the penalty term was decreased,
the range of predicted acetate levels increased (Figure 6C, top
right and bottom left). At a penalty term value of 1072, we found
that the predictive capacity of the SLE-LASSO models differen-
tiated strain-level differences between acetate consumers and
producers (Figure 6C, bottom right and inset). Thus, these results
motivated the idea that lowering the LASSO penalty terms pro-
gressively incorporated deeper branches of the Spectral Tree,
thereby allowing SLE-LASSO models to increasingly consider
strain-level genomic differences. Consistent with this result, we
also observed that if the training set to the SLE-LASSO models
was missing coarse phylogenetic structure, e.g., branches of
entire species that define sets of strains, the SLE-LASSO models
were unable to predict the average metabolic capacity of the
species irrespective of the penalty value (Figure S14). These re-
sults motivated the hypothesis that the LASSO penalty term may
be a tuning parameter that is directly related to phylogenetic
structure as opposed to a hyperparameter that restructures
the genomic neighborhoods of strains in a metabolically aware
manner akin to a deep-neural network. We therefore next inves-
tigated the relationship between (1) the LASSO penalty term,
(2) the predictive capacity of the SLE-LASSO models, and (3)
the scale of phylogeny being considered in the models for all
metabolites.

For each metabolite, we trained and validated SLE-LASSO
models across a range of penalty terms. We found that when
adjusted for model parsimony, the best predictive capacities
for our models (calculated as adjusted r? values) occurred be-
tween a penalty term value of 107%% and 10~"° (Figure 6D;
Table S6). Importantly, we also found that as the penalty term

Cell Systems

continued to increase beyond these values, the predictive ca-
pacity of our models decreased (Figure S15A). These observa-
tions demonstrated that there was a range of optimal penalty
term values that (1) balanced the degree to which models should
be coarse-grained for achieving optimal predictive capacity of
metabolites and (2) prevented overfitting or underfitting of
models relative to the training set used to train the models. To
relate this result with scale of phylogeny being considered in
the models, we investigated how defining the optimal penalty
value for our SLE-LASSO models affected the degree to which
subspecies phylogeny was being considered by the models.
To address this, we quantified the number of Spectral Tree
branches defining subspecies phylogenetic clusters that were
being considered by the model at the penalty term associated
with the peak predictive capacity for each metabolite. We found
that as the penalty term decreased, the fraction of Spectral Tree
branches defining subspecies phylogeny being used in the
model increased (Figure 6E). We found that nearly all peak
predictive SLE-LASSO models incorporated Spectral Tree
branches that defined clusters of subspecies phylogeny with
non-zero coefficients (Figures 6F and S15B). As an example,
interrogating the SLE-LASSO model associated with the peak
predictive capacity for acetate illustrated the presence of several
non-zero LASSO coefficients derived from considering subspe-
cies phylogenetic structure in the Spectral Tree (Figure S16).

These results demonstrated that by resolving subspecies phy-
logeny, the Spectral Tree can enable learning genotype-meta-
bolic relationships for individual strains. However, we noted
that the range of predicting strain-level metabolic capacity per
our SLE-LASSO models was large (Figure S17). For instance,
butyrate could be predicted up to an adjusted R? value of 0.84
while many amino acids could be predicted only up to an
adjusted R? value of <0.2 (Figure 6D). We therefore sought to
better understand why the predictive capacities of certain me-
tabolites were markedly better than others.

First, we found that SLE-LASSO models using the penalty
parameter associated with the peak predictive capacity deter-
mined by considering all species exhibited a poor capacity over-
all to predict the metabolism of strains within specific species
(Figure 7A; Table S7A). Across all metabolites, a majority of pre-
dictive capacities for a given species were close to or less than
zero, highlighting the paucity of predictive power of our SLE-
LASSO models on a per-species basis. In contrast, we found
that if we treated the LASSO penalty value as a hyperparameter
and tuned each species-by-metabolite relationship separately,
the predictive capacity of strain metabolism within species
increased for all species on average (Figures 7B and 7C;
Tables S7B and S7C). Moreover, we found that the resulting dis-
tribution of penalty terms tuned for each species/metabolite pair

(E) Relative concentration of phenylacetate (y axis) versus predicted relative concentration (x axis) where predictions are made by SLE-LASSO models for which
the penalty term is tuned to the species metabolite/pair for strains of B. thetaiotaomicron (top) and B. luti (bottom).

(F) Architecture of Spectral Tree for strains of Bifidobacterium breve (top) and B. thetaiotaomicron (bottom).

(G) Adjusted R? values for all 7,040 repartitioned SLE-LASSO models from (B) (y axis) versus the separability index (x axis) measured by metabolic variation
between donors (see STAR Methods for definition). p values in quadrants reflect statistical significance of enrichment or depletion by Fisher’s exact test using

Bonferroni correction (see Figure S20 for workflow).

(H and l) Number of strain pairs (y axis) versus distance between strain pairs based on the OGG profile of a strain (x axis). (H) Distributions shown for strains
belonging to B. breve (orange distribution) and B. thetaiotaomicron (green distribution). (I) Distributions shown for all pairs of strains sharing the same donor (intra-

donor, yellow distribution) or different donors (“inter-donor,” purple distribution).
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included a substantial fraction of Spectral Tree branches that
defined strain clusters at the scale of subspecies phylogeny (Fig-
ure S18). Consistent with this finding, setting the coefficients of
SLE-LASSO models corresponding to subspecies phylogeny
to zero significantly reduced the predictive capacity of the
models (Figure S19). This result therefore illustrated that merely
knowing the species designation of strains was insufficient for
predicting their metabolic capacity; rather, it was necessary to
incorporate subspecies phylogenetic information even when
treating each species/metabolite pair separately with respect
to the LASSO penalty terms.

We next found that the increased capacity to predict strain-
level metabolic phenotype was dependent on the specific spe-
cies/metabolite pair and not driven by a stereotyped class of me-
tabolites. For example, we compared the SLE-LASSO models of
Blautia luti and Bacteroides thetaiotaomicron for all metabolites
using either a uniform penalty term across all species or a penalty
term tuned for each species/metabolite pair. As expected from
the results shown in Figure 7B, we found that the predictive ca-
pacities for both species significantly increased (Figure 7D).
However, the metabolites with the highest predictive capacities
were different for each species—the predictive capacity of
aspartate metabolism for strains of B. luti exhibited an R? of
greater than 0.25, while metabolites associated with an equiva-
lent predictive capacity for strains of B. thetaiotaomicron were
propionate, cysteine, phenylacetate, acetate, alanine, and lysine
(Figures 7D and 7E).

Collectively, these findings illustrated two results. First, by
treating the LASSO penalty term as a hyperparameter that can
be tuned for a given species and metabolite of interest, strain-
level metabolic capacity can be learned in specific cases of spe-
cies/metabolite pairings. Second, the ability to learn strain-level
metabolic capacity may not be generally possible across spe-
cies or metabolites, suggesting either the need for increased
sampling or that the biology underlying the metabolic capacity
of species may originate from variation outside of genomic
information.

However, the results described above also motivated a key
question: if the ability to predict strain-level metabolic capacity
is dependent on the specific species/metabolite pairing, is there
any measure or descriptor that could inform whether the meta-
bolic capacity of a strain can be learned from SLE-based statis-
tical models? To address this question, we turned to two spe-
cies—Bifidobacterium breve and B. thetaiotaomicron—as a
case study because the predictive capacities of SLE-based
LASSO models are uniformly poor for B. breve but are predictive
for certain metabolites for B. thetaiotaomicron. We found that all
B. breve strains were collected from the same donor, resulting in
a “flat” Spectral Tree architecture below the level of species (Fig-
ure 7F, top). In contrast, strains of B. thetaiotaomicron were
collected from different donors and manifest in a structured
Spectral Tree architecture below the level of species (Figure 7F,
bottom).

This result motivated the hypothesis that strain-level variants
collected from different donors are genetically more diverse
than strain-level variants collected from the same donor, thereby
introducing more genetic variation that can be captured by the
Spectral Tree to define subspecies phylogeny and therefore
learn better SLE-based models of strain metabolic capacity.
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We tested this hypothesis by investigating SLE-LASSO models
from Figure 7B and interrogated the role of metabolic variation
within a single donor versus between different donors on influ-
encing the resulting predictive capacity of the models. The pre-
dictive capacity of each strain/metabolite pair shown in Figure 7B
was the median predictive capacity of 20 separate models, each
trained on a different repartitioning of the dataset. Thus, the total
number of models reflected in Figure 7B was 7,040 (20 reparti-
tions, 32 metabolites, 11 species). First, we stratified the test
set for each metabolite-species-repartition combination by
donor. Second, we calculated the mean and standard deviation
of relative metabolite concentrations for strains within each
donor. Third, we defined the standard deviation of the means
as inter-donor metabolic variation, and we defined the mean of
the standard deviations as intra-donor metabolic variation.
Thus, the ratio between inter- and intra-donor metabolic varia-
tion was a measure of metabolic separability by donor (Fig-
ure S20) (STAR Methods). We term the log, fold-change of this
ratio the “separability index.” A separability index of greater
than 1 indicated that relative metabolite concentration was sepa-
rable by donor, and a separability index of less than 1 indicated
metabolic variability across donors was not separable. Using this
metric, we found there to be a statistically significant enrichment
for higher predictive capacity in SLE-LASSO models where the
relative metabolite concentrations in the test set were separable
by donor (Figure 7G; Table S8). This finding suggested that by
collecting strains across different donors, we would increase
the likelihood of introducing metabolic variability manifest
through differences in strain genomes, motivating comparing
the genomic composition of strains collected from different do-
nors and a single donor. Analyzing the OGG content of strains,
we found that inter-donor strain-level variation was significantly
greater with respect to genomic diversity relative to intra-donor
strain-level variation (Figures 7H and 71). Together, these results
illustrated that one measure indicative of the capacity to learn
strain-level metabolic qualities from genomes is the presence
of subspecies-level structure in the Spectral Tree—a property
we found to be more likely when sampling strains of the same
species from different donors. We discuss the implications of
this finding with respect to informative sampling of bacterial
strains in the discussion.

Considerations for creating and using Spectral Trees
We outline two sets of considerations regarding our work. The
first is with respect to elucidating subspecies phylogeny using
the Spectral Tree. The second is with respect to using the Spec-
tral Tree to relate strain genotype with phenotype.

With regard to resolving subspecies phylogeny within our
strain bank, we note two important aspects that enabled our
result. First, the Spectral Tree created from the UniProt database
incorporated a wide breadth of diversity, encompassing bacte-
rial proteomes across a range of econiches, some of which
included the econiche of the human gut. Moreover, we found
that this diversity was crucial for constructing an accurate
Bayesian prior to contextualize variation among strains in our
strain bank. However, we note that we currently do not have a
quantitative metric for determining the extent of econiche diver-
sity that is necessary to include in order to resolve subspecies
phylogeny. As such, a limitation of our approach is being unable
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to quantitatively define the extent of background diversity
needed for resolving subspecies phylogeny within a strain
bank. Second, by using OGGs as the set of features to describe
a proteome, we captured markedly more genome space than
canonical descriptions of strains based on 16S or sets of gene
markers. The rationale behind expanding genomic descriptors
of bacterial phylogeny from 16S to sets of marker genes, and
ultimately bac120—a set of 120 genes that define phylogenetic
relationships between bacteria—was to balance ‘“signal-to-
noise”: capture enough genomic variation to robustly define
phylogeny while avoiding saturation of genomic variation with
highly fluctuant information. In this sense, we note that though
the Spectral Tree uses the whole proteome as input, spectral
decomposition organizes the variation into hierarchical scales
of signal such that unstructured variation (e.g., statistical pat-
terns that cannot be distinguished from noise) is placed at the
bottom of the eigenspectrum. The rationale for using a more
high-content feature set for describing strain genomes is not
new as others have employed comparative methods across
bacteria at the level of amino acid resolution or in defining
bacterial “pangenomes” —conserved genomic elements across
phylogenetically similar strains.***° A more detailed explanation
comparing pangenome analysis to the construction of Spectral
Trees can be found in supplemental experimental procedures
Section 3 (Figure S21). These approaches suggest that there
may be a degeneracy of different sets of features that effectively
access information across the whole bacterial proteome. The
practical implication of these two considerations is that when
applying our framework to new strain banks, it is important to
ensure that (1) the Spectral Tree is created from a diverse set
of proteomes and (2) that the proteomes are described in a suf-
ficiently high-content manner.

With regard to using the Spectral Trees to relate bacterial ge-
notype with phenotype, we note three caveats to consider. First,
the SLE-based approach we developed presumes a genetic ba-
sis for phenotype that can be accurately captured in OGGs. It is
possible that the phenotype of interest may be reflected in other
descriptions of genetic information—i.e., amino acid changes
within protein sequences belonging to the same OGGs and
insertion/deletion (“indels”) mutations within genes—or in non-
genetic mechanisms of action like transcriptional changes, inter-
actions with other microbes, or interactions with the environ-
ment. In either of these cases, our framework will not produce
a predictive model of phenotype. Second, while the set of
OGGs differentiating strains from each other was associated
with strain-level metabolism, understanding the biological
mechanism underlying our results is immensely challenging
due to the unannotated nature of OGGs. The analysis we per-
formed identifying OGGs that separated layers of the Spectral
Tree showed that while OGGs differentiating coarse phylogeny
(phylum to species) were annotated to an extent above 80%,
greater than 40% of OGGs differentiating individual strains
were unannotated (Figure S22A). Moreover, metabolic variability
captured by the Spectral Tree is associated with OGGs that are
annotated by metabolic functions at a phylum-to-species level
but are broadly unannotated at the level of subspecies phylog-
eny (Figures S22B and S22C). Therefore, we note that validating
the OGGs responsible for determining strain-level metabolic ca-
pacity or other phenotypes within species will first require per-
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forming precise experiments to functionally annotate the candi-
date OGGs and then understand how their variation affects
bacterial metabolism. As tools for genetic manipulation in bacte-
ria outside of well-studied model organisms are limited in their
development, we anticipate this remaining a significant chal-
lenge for the immediate future. Third, the capacity to use the
SLE-LASSO models to predict metabolic phenotypes of subspe-
cies phylogeny is, by definition, dependent on capturing phylo-
genetic diversity in the training set for the model. The reason
for this is because the SLE-LASSO model is a direct representa-
tion of the statistical geometry of genomic variation across bac-
teria. Our results have shown that this geometry reflects phylo-
genetic scales of organization. Therefore, if the training set is
missing a portion of coarse phylogenetic structure (e.g., an entire
species), the resulting SLE-LASSO model will not be able to pre-
dict strain-level metabolic capacities for the missing species. Of
note, the SLE-LASSO models are a fundamentally different sta-
tistical architecture than other types of models that could be
used like artificial neural networks (ANNSs), where the statistical
geometry of variation, and therefore phylogenetic relationships,
are contorted to be phenotypically aware.

DISCUSSION

The importance of individual strains in mediating gut microbiome
function requires new frameworks for their description beyond
merely taxonomic definitions. Here, we showed that co-evolu-
tionary patterns learned from a large diversity of strains across
the bacterial kingdom creates a natural, data-driven, and useful
description of gut commensal strains, revealing the existence of
phylogenetic structure below the level of species. Importantly,
our findings demonstrate how leveraging biological diversity
reflective of many diverse and unrelated environments can
expose constraints on genomic variation within a single environ-
ment. As our framework is not specific to gut bacteria but can be
applied to strains isolated from any environment, we pose that
the construct we have developed —the SLE—may be a generally
useful schema for describing and studying bacterial strains.
The intra- and interpersonal variation in the structure of human
gut microbiomes has been extensively described.*'™® The de-
gree to which this variation reproducibly derives from external
factors has remained a subject of discussion with recent studies
attempting to control for environment—like diet or spatial geog-
raphy—to “normalize” structural changes observed in human
cohort studies.**™® Our data suggest that a history of phage
infection among hosts can lead to structured, non-random mi-
crobiome changes between groups of humans that manifest in
subspecies phylogeny. While we demonstrated how these
changes lead to different behaviors at the scale of individual bac-
teria, the functional consequences of such strain-level variation
at the scale of the whole microbiome remain to be characterized.
Though a majority of the phage-suppressed OGGs we identified
were phylogenetically conserved, the strains nevertheless per-
sisted in the gut microbiome of donors. This suggests that
perhaps changes in conserved genomic areas within individual
bacteria can be tolerated without a substantial fithess decrease
when considered within the context of the entire gut ecosystem.
The recent shift toward genomic analysis of bacteria within the
context of whole microbial ecosystems will enable a better



Cell Systems

definition for a “null hypothesis” of genomic constraint within in-
dividual strains.

From a practical perspective of learning about the metabolic
capacity of individual strains, it has been previously argued
that because strain-level genomic variation does not obviously
map to strain-level metabolic variation, it is necessary to meta-
bolically profile each and every new strain that is collected.””
Our results suggest a substantially different point of view.
As more genetically diverse bacterial strains are collected,
sequenced, and metabolically phenotyped, including new me-
tabolites that are discovered to be important, the constructs
developed here—the Spectral Tree and SLE-based predictive
models—could be used to learn genotype-metabolic relation-
ships of strain-level variants. Indeed, as our results demonstrate,
achieving a reasonable predictive capacity even for a subset of
metabolites required tuning our statistical models in a manner
specific to the species-metabolite pairing. However, our findings
also showed that increasing the genetic diversity of subspecies
phylogeny is directly related to creating predictive statistical
models of metabolic capacity. Thus, our results highlight the pre-
dictive power in having a strain bank comprising diverse subspe-
cies phylogeny. How can this practically be achieved? As we
showed that genetic diversity in subspecies phylogeny origi-
nates from the econiche of individual donors (see Figures 4C
and 7F), we pose that a useful sampling strategy is constructing
strain banks across a broad set of donors rather than deeply
sampling strains from individual donors. Our data suggest that
this approach to sampling—shallow sampling across many do-
nors—will introduce the necessary scale of genomic variation
for learning genotype-phenotype relationships among strain-
level variants of the same species. We acknowledge that an
important caveat is that strain metabolism can change as a func-
tion of culture conditions; therefore, it will be important in the
future to test whether coordinated changes in bacterial meta-
bolism across culture conditions also follow co-evolutionary pat-
terns as described here. However, because the Spectral Tree is
an object capable of incorporating new sequences and as there
are many ongoing efforts to understand bacterial genotype-
phenotype relationships at the scale of individual strains, the
Spectral Tree could be a unifying dynamic framework for per-
forming comparative phylogenomics for arbitrary phenotypes
of interest.

What fundamental properties underlie the utility of describing
strains by their co-evolutionary signature? Unlike engineered
systems, existing or “extant” biological systems arise from an-
cestors through the evolutionary process.*’>" Therefore, under-
standing how patterns of genetic interactions encode behaviors
is inextricably intertwined with defining commonalities and diver-
gences in molecular structure.®®>?">" Current statistical strate-
gies for parsing differences among genomes involve so-called
“factorization” approaches that discover low-dimensional rep-
resentations of high-dimensional patterns of variation. Indeed,
the era of biological big data has seen an explosion in the use
of factorization methods.®® Such approaches are predicated
on a key assumption: the systems being interrogated are unre-
lated to each other. For evolved systems, ancestral relatedness
violates the assumption of system independence, demanding a
new formalism for comparative efforts. We reason that the SLE is
a useful descriptor of bacteria because it embeds hierarchical
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scales of relatedness across the evolutionary record, simulta-
neously capturing both broad phylogenetic differences and
fine-grained differences within species. The hierarchical nature
of the SLE as a descriptor therefore distinguishes variation
arising from ancient phylogenetic sources from functional differ-
ences reflecting recent adaptations (i.e., to individual human
hosts). This capacity to separate sources of variance is key for
creating accurate predictive models of biological behavior from
genome content.”® We anticipate that our approach is unlikely
to be the only applicable framework given the recent develop-
ment, implementation, and success of large language models
(LLMs) in characterizing evolutionary relationships among com-
plex biological systems.®®°" However, our findings show that
creating statistical representations of the evolutionary record
may lay an interpretable foundation for understanding and pre-
dicting idiosyncrasies of individual biological systems that
deviate from broad phylogenetic trends. Future studies applying
the concepts developed here to other evolved systems will test
this idea.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfiled by the lead contact, Arjun S. Raman
(araman@bsd.uchicago.edu).

Materials availability
Strains of the commensal strain bank are available upon request.

Data and code availability

® Sequencing data for all strains used in this paper are available on NCBI:
PRJNA737800. All raw data from metabolomics can be downloaded
from Metabolights: MTBLS7771.

e All analysis code used in this study for analysis was made in Julia. Some
code for plotting was made in R. All code used for genome sequencing
and metabolomic processing was made in Python. All code, along
with annotations and stepwise instructions, are available for download
via a github repository: https://github.com/aramanlab/Doran_etal_
2028. (https://doi.org/10.5281/zenodo.13244426)

e Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

We thank S. Kuehn, M. Mani, D. Pincus, A. Murugan, J. Gordon, S. Oakes, A.
Drummond, O. Rivoire, and R. Ranganathan for helpful discussions. This work
was supported by NIH grant RM35GM146702 and the Duchossois Family
Institute at the University of Chicago.

AUTHOR CONTRIBUTIONS

B.A.D. and A.S.R. designed this study and conceived of the approach
taken. B.A.D. and R.Y.C. conceptualized “spectral distance” as a quantita-
tive metric. H.G. and B.A.D. performed motility experiments of E. rectale
strains. B.B., A.S., and H.L. oversaw the collection, isolation, sequencing,
and bioinformatic analysis of the CSB. V.B. conceptualized and wrote the
code for evaluating statistically significant differences in feature abun-
dances between daughters of Spectral Tree. A.S. aided in the execution
and supervision of metabolomic profiling on strains. E.G.P. oversaw and su-
pervised the collection, isolation, sequencing, and metabolomic profiling of
strains. B.A.D. wrote all code and conducted all analysis. B.A.D. and A.S.R.
wrote the paper.

Cell Systems 16, 101167, February 19, 2025 17



mailto:araman@bsd.uchicago.edu
https://github.com/aramanlab/Doran_etal_2023
https://github.com/aramanlab/Doran_etal_2023
https://doi.org/10.5281/zenodo.13244426

¢? CellPress

OPEN ACCESS

DECLARATION OF INTERESTS

E.G.P. serves on the advisory board of Diversigen, has received speaker hon-
oraria from Bristol Myers Squibb, Celgene, Seres Therapeutics, Medimmune,
Novartis, and Ferring Pharmaceuticals; is an inventor on patent applications
WP02015179437A1, entitled “Methods and compositions for reducing Clos-
tridium difficile infection,” and W0O2017091753A1, entitled “Methods and
compositions for reducing vancomycin-resistant enterococci infection or colo-
nization”; and holds patents that receive royalties from Seres Therapeutics Inc.

STARXMETHODS

Detailed methods are provided in the online version of this paper and include
the following:

o KEY RESOURCES TABLE
o EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
e METHOD DETAILS
o Genome sequencing of commensal strain bank
o Metabolic profiling of strains
o Motility assay for E. rectale isolates
o QUANTIFICATION AND STATISTICAL ANALYSIS
Phylogenetic trees of strain bank
Spectral distance and spectral groups
Measuring the accuracy of Spectral Trees
Mutual Information (Ml) calculation
Recreating the alignment
Creating a Spectral Tree across UniProt
MI between Spectral Tree and phylogeny
Projecting CSB into the Spectral Tree
SLE LASSO model training and validation
Separability of donor metabolic variation

[e]

O O 0O OO0 000 O

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
cels.2024.12.008.

Received: December 26, 2023
Revised: February 16, 2024
Accepted: December 18, 2024
Published: January 17, 2025

REFERENCES

1. Sunagawa, S., Acinas, S.G., Bork, P., Bowler, C., Tara Oceans
Coordinators, Eveillard, D., Gorsky, G., Guidi, L., ludicone, D., Karsenti,
E., et al. (2020). Tara Oceans: towards global ocean ecosystems biology.
Nat. Rev. Microbiol. 18, 428-445. https://doi.org/10.1038/s41579-020-
0364-5.

2. Integrative HMP (iHMP) Research Network Consortium (2019). The
Integrative Human Microbiome Project. Nature 569, 641-648. https://
doi.org/10.1038/s41586-019-1238-8.

3. Nayfach, S., Roux, S., Seshadri, R., Udwary, D., Varghese, N., Schulz, F.,
Wu, D., Paez-Espino, D., Chen, |.-M., Huntemann, M., et al. (2021). A
genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499-509.
https://doi.org/10.1038/s41587-020-0718-6.

4. Compant, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on
the plant microbiome: Ecology, functions, and emerging trends in micro-
bial application. J. Adv. Res. 19, 29-37. https://doi.org/10.1016/j.jare.
2019.03.004.

5. Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello,
M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N.,
Anokhin, A.P., et al. (2012). Human gut microbiome viewed across
age and geography. Nature 486, 222-227. https://doi.org/10.1038/
nature11053.

18  Cell Systems 16, 101167, February 19, 2025

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

Cell Systems

. Thursby, E., and Juge, N. (2017). Introduction to the human gut microbiota.

Biochem. J. 474, 1823-1836. https://doi.org/10.1042/BCJ20160510.

. Cho, ., and Blaser, M.J. (2012). The human microbiome: at the interface of

health and disease. Nat. Rev. Genet. 13, 260-270. https://doi.org/10.
1038/nrg3182.

. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F.,

Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive
Unexplored Human Microbiome Diversity Revealed by Over 150,000
Genomes from Metagenomes Spanning Age, Geography, and Lifestyle.
Cell 176, 649-662.e20. https://doi.org/10.1016/j.cell.2019.01.001.

. Yan, Y., Nguyen, L.H., Franzosa, E.A., and Huttenhower, C. (2020). Strain-

level epidemiology of microbial communities and the human microbiome.
Genome Med. 12, 71. https://doi.org/10.1186/s13073-020-00765-y.

Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. (2017).
Microbial strain-level population structure and genetic diversity from
metagenomes. Genome Res. 27, 626-638. https://doi.org/10.1101/gr.
216242.116.

Beghini, F., Mclver, L.J., Blanco-Miguez, A., Dubois, L., Asnicar, F.,
Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al.
(2021). Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. eLife 70, e65088.
https://doi.org/10.7554/eLife.65088.

Costea, P.l., Coelho, L.P., Sunagawa, S., Munch, R., Huerta-Cepas, J.,
Forslund, K., Hildebrand, F., Kushugulova, A., Zeller, G., and Bork, P.
(2017). Subspecies in the global human gut microbiome. Mol. Syst. Biol.
13, 960. https://doi.org/10.15252/msb.20177589.

Barratt, M.J., Nuzhat, S., Ahsan, K., Frese, S.A., Arzamasov, A.A., Sarker,
S.A,, Islam, M.M., Palit, P., Islam, M.R., Hibberd, M.C., et al. (2022).
Bifidobacterium infantis treatment promotes weight gain in Bangladeshi
infants with severe acute malnutrition. Sci. Transl. Med. 14, eabk1107.
https://doi.org/10.1126/scitransImed.abk1107.

Sela, D.A., Garrido, D., Lerno, L., Wu, S., Tan, K., Eom, H.-J., Joachimiak,
A., Lebrilla, C.B., and Mills, D.A. (2012). Bifidobacterium longum subsp. in-
fantis ATCC 15697 a-fucosidases are active on fucosylated human milk ol-
igosaccharides. Appl. Environ. Microbiol. 78, 795-803. https://doi.org/10.
1128/AEM.06762-11.

Underwood, M.A., German, J.B., Lebrilla, C.B., and Mills, D.A. (2015).
Bifidobacterium longum subspecies infantis: champion colonizer of the in-
fant gut. Pediatr. Res. 77, 229-235. https://doi.org/10.1038/pr.2014.156.

Yang, C., Mogno, |., Contijoch, E.J., Borgerding, J.N., Aggarwala, V., Li, Z.,
Siu, S., Grasset, E.K., Helmus, D.S., Dubinsky, M.C., et al. (2020). Fecal
IgA Levels Are Determined by Strain-Level Differences in Bacteroides ova-
tus and Are Modifiable by Gut Microbiota Manipulation. Cell Host Microbe
27, 467-475.€6. https://doi.org/10.1016/j.chom.2020.01.016.

Patnode, M.L., Guruge, J.L., Castillo, J.J., Couture, G.A., Lombard, V.,
Terrapon, N., Henrissat, B., Lebrilla, C.B., and Gordon, J.I. (2021).
Strain-level functional variation in the human gut microbiota based on bac-
terial binding to artificial food particles. Cell Host Microbe 29, 664-673.e5.
https://doi.org/10.1016/j.chom.2021.01.007.

Hall, A.B., Yassour, M., Sauk, J., Garner, A., Jiang, X., Arthur, T.,
Lagoudas, G.K., Vatanen, T., Fornelos, N., Wilson, R., et al. (2017). A novel
Ruminococcus gnavus clade enriched in inflammatory bowel disease pa-
tients. Genome Med. 9, 103. https://doi.org/10.1186/s13073-017-0490-5.
Lianou, A., and Koutsoumanis, K.P. (2013). Strain variability of the
behavior of foodborne bacterial pathogens: a review. Int. J. Food
Microbiol. 167, 310-321. https://doi.org/10.1016/}.ijfoodmicro.2013.
09.016.

Han, S., Van Treuren, W., Fischer, C.R., Merrill, B.D., DeFelice, B.C.,
Sanchez, J.M., Higginbottom, S.K., Guthrie, L., Fall, L.A., Dodd, D., et al.
(2021). A metabolomics pipeline for the mechanistic interrogation of the
gut microbiome. Nature 595, 415-420. https://doi.org/10.1038/s41586-
021-03707-9.

Chen, H., Nwe, P.-K., Yang, Y., Rosen, C.E., Bielecka, A.A., Kuchroo, M.,
Cline, G.W., Kruse, A.C., Ring, A.M., Crawford, J.M., et al. (2019). A
Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites


https://doi.org/10.1016/j.cels.2024.12.008
https://doi.org/10.1016/j.cels.2024.12.008
https://doi.org/10.1038/s41579-020-0364-5
https://doi.org/10.1038/s41579-020-0364-5
https://doi.org/10.1038/s41586-019-1238-8
https://doi.org/10.1038/s41586-019-1238-8
https://doi.org/10.1038/s41587-020-0718-6
https://doi.org/10.1016/j.jare.2019.03.004
https://doi.org/10.1016/j.jare.2019.03.004
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1042/BCJ20160510
https://doi.org/10.1038/nrg3182
https://doi.org/10.1038/nrg3182
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1186/s13073-020-00765-y
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.7554/eLife.65088
https://doi.org/10.15252/msb.20177589
https://doi.org/10.1126/scitranslmed.abk1107
https://doi.org/10.1128/AEM.06762-11
https://doi.org/10.1128/AEM.06762-11
https://doi.org/10.1038/pr.2014.156
https://doi.org/10.1016/j.chom.2020.01.016
https://doi.org/10.1016/j.chom.2021.01.007
https://doi.org/10.1186/s13073-017-0490-5
https://doi.org/10.1016/j.ijfoodmicro.2013.09.016
https://doi.org/10.1016/j.ijfoodmicro.2013.09.016
https://doi.org/10.1038/s41586-021-03707-9
https://doi.org/10.1038/s41586-021-03707-9

Cell Systems

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

That Modulate Host Physiology. Cell 177, 1217-1231.e18. https://doi.org/
10.1016/j.cell.2019.03.036.

Sorbara, M.T., Littmann, E.R., Fontana, E., Moody, T.U., Kohout, C.E.,
Gjonbalaj, M., Eaton, V., Seok, R., Leiner, .M., and Pamer, E.G. (2020).
Functional and Genomic Variation between Human-Derived Isolates of
Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell Host
Microbe 28, 134-146.e4. https://doi.org/10.1016/j.chom.2020.05.005.

Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005).
The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589-594. https://
doi.org/10.1016/j.gde.2005.09.006.

Gianola, D. (2013). Priors in whole-genome regression: the bayesian al-
phabet returns. Genetics 194, 573-596. https://doi.org/10.1534/ge-
netics.113.151753.

R Oaks, J., A Cobb, K., N Minin, V., and D Leaché, A. (2019). Marginal
Likelihoods in Phylogenetics: A Review of Methods and Applications.
Syst. Biol. 68, 681-697. https://doi.org/10.1093/sysbio/syz003.

Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A.,
Chaumeil, P.-A., and Hugenholtz, P. (2018). A standardized bacterial tax-
onomy based on genome phylogeny substantially revises the tree of life.
Nat. Biotechnol. 36, 996-1004. https://doi.org/10.1038/nbt.4229.

Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A.,
Vésa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.M.A.E., Oosting, M.,
et al. (2019). Causal relationships among the gut microbiome, short-chain
fatty acids and metabolic diseases. Nat. Genet. 57, 600-605. https://doi.
org/10.1038/s41588-019-0350-x.

Liu, J., Tan, Y., Cheng, H., Zhang, D., Feng, W., and Peng, C. (2022).
Functions of Gut Microbiota Metabolites, Current Status and Future
Perspectives. Aging Dis. 13, 1106-1126. https://doi.org/10.14336/AD.
2022.0104.

UniProt Consortium (2021). UniProt: the universal protein knowledgebase
in 2021. Nucleic Acids Res. 49, D480-D489. https://doi.org/10.1093/nar/
gkaa1100.

Zaydman, M.A,, Little, A.S., Haro, F., Aksianiuk, V., Buchser, W.J.,
DiAntonio, A., Gordon, J.l., Milbrandt, J., and Raman, A.S. (2022).
Defining hierarchical protein interaction networks from spectral analysis
of bacterial proteomes. elife 77, e74104. https://doi.org/10.7554/
eLife.74104.

Sakoparnig, T., Field, C., and van Nimwegen, E. (2021). Whole genome
phylogenies reflect the distributions of recombination rates for many bac-
terial species. eLife 10, e65366. https://doi.org/10.7554/eLife.65366.

Magee, AF., Hilton, S.K., and DeWitt, W.S. (2021). Robustness of
Phylogenetic Inference to Model Misspecification Caused by Pairwise
Epistasis. Mol. Biol. Evol. 38, 4603-4615. https://doi.org/10.1093/mol-
bev/msab163.

Wigner, E.P. (1967). Random Matrices in Physics. SIAM Rev. 9, 1-23.
https://doi.org/10.1137/1009001.

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A.,
Forslund, S.K., Cook, H., Mende, D.R., Letunic, |., Rattei, T., Jensen,
L.J., etal. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenet-
ically annotated orthology resource based on 5090 organisms and 2502
viruses. Nucleic Acids Res. 47, D309-D314. https://doi.org/10.1093/nar/
gky1085.

Cantalapiedra, C.P., Hernandez-Plaza, A., Letunic, I., Bork, P., and
Huerta-Cepas, J. (2021). eggNOG-mapper v2: Functional Annotation,
Orthology Assignments, and Domain Prediction at the Metagenomic
Scale. Mol. Biol. Evol. 38, 5825-5829. https://doi.org/10.1093/molbev/
msab293.

Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J.,
Castelle, C.J., Butterfield, C.N., Hernsdorf, A.W., Amano, Y., Ise, K.,
et al. (2016). A new view of the tree of life. Nat. Microbiol. 7, 16048.
https://doi.org/10.1038/nmicrobiol.2016.48.

Wang, Y., Huang, J.-M., Zhou, Y.-L., Aimeida, A., Finn, R.D., Danchin, A.,
and He, L.-S. (2020). Phylogenomics of expanding uncultured environ-
mental Tenericutes provides insights into their pathogenicity and evolu-

38.

39.

40.

41,

42,

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

¢? CellPress

OPEN ACCESS

tionary relationship with Bacilli. BMC Genomics 21, 408. https://doi.org/
10.1186/512864-020-06807-4.

Karcher, N., Pasolli, E., Asnicar, F., Huang, K.D., Tett, A., Manara, S.,
Armanini, F., Bain, D., Duncan, S.H., Louis, P., et al. (2020). Analysis of
1321 Eubacterium rectale genomes from metagenomes uncovers com-
plex phylogeographic population structure and subspecies functional ad-
aptations. Genome Biol. 27, 138. https://doi.org/10.1186/s13059-020-
02042-y.

Cong, Q., Anishchenko, I., Ovchinnikov, S., and Baker, D. (2019). Protein
interaction networks revealed by proteome coevolution. Science 365,
185-189. https://doi.org/10.1126/science.aaw6718.

Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden,
M.T.G., Fookes, M., Falush, D., Keane, J.A., and Parkhill, J. (2015). Roary:
rapid large-scale prokaryote pan genome analysis. Bioinformatics 37,
3691-3693. https://doi.org/10.1093/bioinformatics/btv421.

Zhao, S., Lieberman, T.D., Poyet, M., Kauffman, K.M., Gibbons, S.M.,
Groussin, M., Xavier, R.J., and Aim, E.J. (2019). Adaptive Evolution within
Gut Microbiomes of Healthy People. Cell Host Microbe 25, 656-667.e8.
https://doi.org/10.1016/j.chom.2019.03.007.

Garud, N.R., Good, B.H., Hallatschek, O., and Pollard, K.S. (2019).
Evolutionary dynamics of bacteria in the gut microbiome within and across
hosts. PLoS Biol. 77, €3000102. https://doi.org/10.1371/journal.pbio.
3000102.

Yang, Y., Nguyen, M., Khetrapal, V., Sonnert, N.D., Martin, A.L., Chen, H.,
Kriegel, M.A., and Palm, N.W. (2022). Within-host evolution of a gut path-
obiont facilitates liver translocation. Nature 607, 563-570. https://doi.org/
10.1038/s41586-022-04949-x.

Gehrig, J.L., Venkatesh, S., Chang, H.-W., Hibberd, M.C., Kung, V.L.,
Cheng, J., Chen, R.Y., Subramanian, S., Cowardin, C.A., Meier, M.F.,
et al. (2019). Effects of microbiota-directed foods in gnotobiotic animals
and undernourished children. Science 365, eaau4732. https://doi.org/
10.1126/science.aau4732.

Delannoy-Bruno, O., Desai, C., Raman, A.S., Chen, R.Y., Hibberd, M.C.,
Cheng, J., Han, N., Castillo, J.J., Couture, G., Lebrilla, C.B., et al. (2021).
Evaluating microbiome-directed fibre snacks in gnotobiotic mice and hu-
mans. Nature 595, 91-95. https://doi.org/10.1038/s41586-021-03671-4.

Guthrie, L., Spencer, S.P., Perelman, D., Van Treuren, W., Han, S., Yu,
F.B., Sonnenburg, E.D., Fischbach, M.A., Meyer, T.W., and Sonnenburg,
J.L. (2022). Impact of a 7-day homogeneous diet on interpersonal variation
in human gut microbiomes and metabolomes. Cell Host Microbe 30, 863—
874.e4. https://doi.org/10.1016/j.chom.2022.05.0083.

Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokary-
otic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088—
5090. https://doi.org/10.1073/pnas.74.11.5088.

Felsenstein, J. (1985). Phylogenies and the Comparative Method. Am. Nat.
125, 1-15. https://doi.org/10.1086/284325.

Woese, C. (1998). The universal ancestor. Proc. Natl. Acad. Sci. USA 95,
6854-6859. https://doi.org/10.1073/pnas.95.12.6854.

Yang, Z., and Rannala, B. (2012). Molecular phylogenetics: principles and
practice. Nat. Rev. Genet. 13, 303-314. https://doi.org/10.1038/nrg3186.

Kapli, P., Yang, Z., and Telford, M.J. (2020). Phylogenetic tree building in
the genomic age. Nat. Rev. Genet. 27, 428-444. https://doi.org/10.1038/
s41576-020-0233-0.

Qin, C., and Colwell, L.J. (2018). Power law tails in phylogenetic systems.
Proc. Natl. Acad. Sci. USA 115, 690-695. https://doi.org/10.1073/pnas.
1711913115,

Nitzan, M., and Brenner, M.P. (2021). Revealing lineage-related signals in
single-cell gene expression using random matrix theory. Proc. Natl. Acad.
Sci. USA 118, €1913931118. https://doi.org/10.1073/pnas.1913931118.

Pazos, F., Ranea, J.A.G., Juan, D., and Sternberg, M.J.E. (2005).
Assessing protein co-evolution in the context of the tree of life assists in
the prediction of the interactome. J. Mol. Biol. 352, 1002-1015. https://
doi.org/10.1016/j.jmb.2005.07.005.

Cell Systems 16, 101167, February 19, 2025 19



https://doi.org/10.1016/j.cell.2019.03.036
https://doi.org/10.1016/j.cell.2019.03.036
https://doi.org/10.1016/j.chom.2020.05.005
https://doi.org/10.1016/j.gde.2005.09.006
https://doi.org/10.1016/j.gde.2005.09.006
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1093/sysbio/syz003
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/s41588-019-0350-x
https://doi.org/10.1038/s41588-019-0350-x
https://doi.org/10.14336/AD.2022.0104
https://doi.org/10.14336/AD.2022.0104
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.7554/eLife.74104
https://doi.org/10.7554/eLife.74104
https://doi.org/10.7554/eLife.65366
https://doi.org/10.1093/molbev/msab163
https://doi.org/10.1093/molbev/msab163
https://doi.org/10.1137/1009001
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1186/s12864-020-06807-4
https://doi.org/10.1186/s12864-020-06807-4
https://doi.org/10.1186/s13059-020-02042-y
https://doi.org/10.1186/s13059-020-02042-y
https://doi.org/10.1126/science.aaw6718
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1016/j.chom.2019.03.007
https://doi.org/10.1371/journal.pbio.3000102
https://doi.org/10.1371/journal.pbio.3000102
https://doi.org/10.1038/s41586-022-04949-x
https://doi.org/10.1038/s41586-022-04949-x
https://doi.org/10.1126/science.aau4732
https://doi.org/10.1126/science.aau4732
https://doi.org/10.1038/s41586-021-03671-4
https://doi.org/10.1016/j.chom.2022.05.003
https://doi.org/10.1073/pnas.74.11.5088
https://doi.org/10.1086/284325
https://doi.org/10.1073/pnas.95.12.6854
https://doi.org/10.1038/nrg3186
https://doi.org/10.1038/s41576-020-0233-0
https://doi.org/10.1038/s41576-020-0233-0
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1073/pnas.1711913115
https://doi.org/10.1073/pnas.1913931118
https://doi.org/10.1016/j.jmb.2005.07.005
https://doi.org/10.1016/j.jmb.2005.07.005

¢? CellPress

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

20

OPEN ACCESS

Sun, J., Xu, J., Liu, Z,, Liu, Q., Zhao, A., Shi, T., and Li, Y. (2005). Refined
phylogenetic profiles method for predicting protein—protein interactions.
Bioinformatics 21, 3409-3415. https://doi.org/10.1093/bioinformatics/
bti532.

Kann, M.G., Jothi, R., Cherukuri, P.F., and Przytycka, T.M. (2007).
Predicting protein domain interactions from coevolution of conserved re-
gions. Proteins 67, 811-820. https://doi.org/10.1002/prot.21347.

Juan, D., Pazos, F., and Valencia, A. (2008). High-confidence prediction of
global interactomes based on genome-wide coevolutionary networks.
Proc. Natl. Acad. Sci. USA 105, 934-939. https://doi.org/10.1073/pnas.
0709671105.

Stein-O’Brien, G.L., Arora, R., Culhane, A.C., Favorov, A.V., Garmire, L.X.,
Greene, C.S., Goff, L.A., Li, Y., Ngom, A., Ochs, M.F., et al. (2018).
Enter the Matrix: Factorization Uncovers Knowledge from Omics.
Trends Genet. 34, 790-805. https://doi.org/10.1016/j.tig.2018.07.003.

Sul, J.H., Martin, L.S., and Eskin, E. (2018). Population structure in genetic
studies: Confounding factors and mixed models. PLoS Genet. 74,
€1007309. https://doi.org/10.1371/journal.pgen.1007309.

Hie, B.L., Yang, K.K., and Kim, P.S. (2022). Evolutionary velocity with pro-
tein language models predicts evolutionary dynamics of diverse proteins.
Cell Syst. 13, 274-285.€6. https://doi.org/10.1016/j.cels.2022.01.003.

Hie, B.L., Shanker, V.R., Xu, D., Bruun, T.U.J., Weidenbacher, P.A., Tang,
S., Wu, W., Pak, J.E., and Kim, P.S. (2024). Efficient evolution of human
antibodies from general protein language models. Nat. Biotechnol. 42,
275-283. https://doi.org/10.1038/s41587-023-01763-2.

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bioinformatics
22, 1658-1659.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov,
A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012).
SPAdes: a new genome assembly algorithm and its applications to sin-
gle-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.
1089/cmb.2012.0021.

Edwards, U., Rogall, T., Blécker, H., Emde, M., and Béttger, E.C. (1989).
Isolation and direct complete nucleotide determination of entire genes.
Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids
Res. 17, 7843-7853. https://doi.org/10.1093/nar/17.19.7843.

Baker, G.C., Smith, J.J., and Cowan, D.A. (2003). Review and re-analysis
of domain-specific 16S primers. J. Microbiol. Methods 55, 541-555.
https://doi.org/10.1016/j.mimet.2003.08.009.

Petti, C.A. (2007). Detection and Identification of Microorganisms by Gene
Amplification and Sequencing. Clin. Infect. Dis. 44, 1108-1114. https://
doi.org/10.1086/512818.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991). 16S ri-
bosomal DNA amplification for phylogenetic study. J. Bacteriol. 173,
697-703. https://doi.org/10.1128/jb.173.2.697-703.1991.

Cell Systems 16, 101167, February 19, 2025

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Cell Systems

Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic
analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/
s$13059-019-1891-0.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,
Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applica-
tions. BMC Bioinformatics 70, 421. https://doi.org/10.1186/1471-2105-
10-421.

Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2019).
GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy
Database. Bioinformatics 36, 1925-1927. https://doi.org/10.1093/bioin-
formatics/btz848.

Haak, B.W., Littmann, E.R., Chaubard, J.-L., Pickard, A.J., Fontana, E.,
Adhi, F., Gyaltshen, Y., Ling, L., Morjaria, S.M., Peled, J.U., et al. (2018).
Impact of gut colonization with butyrate-producing microbiota on respira-
tory viral infection following allo-HCT. Blood 7317, 2978-2986. https://doi.
org/10.1182/blood-2018-01-828996.

Katoh, K., and Standley, D.M. (2013). MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in Performance and
Usability. Mol. Biol. Evol. 30, 772-780.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and
Gascuel, O. (2010). New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0. Syst.
Biol. 59, 307-321. https://doi.org/10.1093/sysbio/syq010.

Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2022).
GTDB-Tk v2: memory friendly classification with the genome taxonomy
database. Bioinformatics 38, 5315-5316. https://doi.org/10.1093/bioin-
formatics/btac672.

Lemoine, F., and Gascuel, O. (2021). Gotree/Goalign: toolkit and Go APl to
facilitate the development of phylogenetic workflows. NAR Genom.
Bioinform. 3, Igab075. https://doi.org/10.1093/nargab/Igab075.
Rambaut, A., and Grassly, N.C. (1997). Seg-Gen: an application for the
Monte Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput. Appl. Biosci. 13, 235-238. https://doi.org/10.1093/bioin-
formatics/13.3.235.

Fraser, C., Hanage, W.P., and Spratt, B.G. (2007). Recombination and the
nature of bacterial speciation. Science 315, 476-480. https://doi.org/10.
1126/science.1127573.

Van Rossum, T., Ferretti, P., Maistrenko, O.M., and Bork, P. (2020).
Diversity within species: interpreting strains in microbiomes. Nat. Rev.
Microbiol. 18, 491-506. https://doi.org/10.1038/s41579-020-0368-1.
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4,
406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
Lemoine, F., Domelevo Entfellner, J.B., Wilkinson, E., Correia, D., Davila
Felipe, M., De Oliveira, T., and Gascuel, O. (2018). Renewing
Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556,
452-456. https://doi.org/10.1038/s41586-018-0043-0.


https://doi.org/10.1093/bioinformatics/bti532
https://doi.org/10.1093/bioinformatics/bti532
https://doi.org/10.1002/prot.21347
https://doi.org/10.1073/pnas.0709671105
https://doi.org/10.1073/pnas.0709671105
https://doi.org/10.1016/j.tig.2018.07.003
https://doi.org/10.1371/journal.pgen.1007309
https://doi.org/10.1016/j.cels.2022.01.003
https://doi.org/10.1038/s41587-023-01763-2
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref62
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref62
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref62
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1093/nar/17.19.7843
https://doi.org/10.1016/j.mimet.2003.08.009
https://doi.org/10.1086/512818
https://doi.org/10.1086/512818
https://doi.org/10.1128/jb.173.2.697-703.1991
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1182/blood-2018-01-828996
https://doi.org/10.1182/blood-2018-01-828996
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref72
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref72
http://refhub.elsevier.com/S2405-4712(24)00402-2/sref72
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1093/bioinformatics/btac672
https://doi.org/10.1093/bioinformatics/btac672
https://doi.org/10.1093/nargab/lqab075
https://doi.org/10.1093/bioinformatics/13.3.235
https://doi.org/10.1093/bioinformatics/13.3.235
https://doi.org/10.1126/science.1127573
https://doi.org/10.1126/science.1127573
https://doi.org/10.1038/s41579-020-0368-1
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1038/s41586-018-0043-0

Cell Systems ¢ CellPress

OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

All sequencing data for commensal strain bank This paper NCBI (Accession: PRINA737800)
see Table S1 for individual accession numbers

Raw metabolic data for commensal strain bank This paper Metabolights (Study ID: MTBLS7771)

Experimental models: Organisms/strains

E. rectale, Strain ID: MSK.9.13, NCBI_accession: JAAISA000000000 This paper Available upon request

E. rectale, Strain ID: MSK.9.15, NCBI_accession: JAAIRZ000000000 This paper Available upon request

E. rectale, Strain ID: MSK.13.48, NCBI_accession: JAAISJ000000000 This paper Available upon request

E. rectale, Strain ID: MSK.13.50, NCBI_accession: JAAISI000000000 This paper Available upon request

E. rectale, Strain ID: MSK.13.59, NCBI_accession: JAAISHO00000000 This paper Available upon request

E. rectale, Strain ID: MSK.16.22, NCBI_accession: JAAIMQO000000000 This paper Available upon request

E. rectale, Strain ID: MSK.16.45, NCBI_accession: JAAIMP0O00000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.13, NCBI_accession: JAAIMKO00000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.19, NCBI_accession: JAAIMJ0O00000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.3, NCBI_accession: JAAIMG000000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.42, NCBI_accession: JAAIMEOO0000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.57, NCBI_accession: JAAIMC000000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.70, NCBI_accession: JAAILY000000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.78, NCBI_accession: JAAILX000000000 This paper Available upon request

E. rectale, Strain ID: MSK.17.79, NCBI_accession: JAAILW000000000 This paper Available upon request

E. rectale, Strain ID: MSK.22.19, NCBI_accession: JAAISFO00000000 This paper Available upon request

E. rectale, Strain ID: MSK.22.23, NCBI_accession: JAAISEO00000000 This paper Available upon request

E. rectale, Strain ID: MSK.22.28, NCBI_accession: JAAISD0O00000000 This paper Available upon request

E. rectale, Strain ID: MSK.22.51, NCBI_accession: JAAISBO00000000 This paper Available upon request

E. rectale, Strain ID: MSK.22.92, NCBI_accession: JAJFBX000000000 This paper Available upon request

Software and algorithms

Spectrallnference.jl This paper https://doi.org/10.5281/zenodo.13244626

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
All collection of stool samples from healthy donors (leading to isolation of strains in Biobank) is covered under IRB 20-1384.
METHOD DETAILS

Genome sequencing of commensal strain bank

Fecal samples were obtained from 28 human donors that fell within the age range of 18 to 63 with a median age of 35. Donors were
selected as those with no antibiotic use in the past year, no known history of diabetes, colitis, autoimmune disease, cancer, pneu-
monia, dysentery, or cellulitis at time of consent. Institutions that approved protocols of fecal sample collection were Memorial Sloan
Kettering (MSK) and the University of Chicago under IRB 20-1384.

Fresh fecal samples were immediately reduced in an anaerobic chamber upon collection and diluted and cultured on various
growth media. Agar media types vary, but include any of following: Columbia Blood Agar, Brain Heart Infusion +Yeast, Brain Heart
Infusion + Mucin, Brain Heart Infusion + Yeast + Acetate or N-Acetylglucosamine, reinforced Clostridial Agar, Peptone Yeast
Glucose, Yeast Casitone Fatty Acids, Defined media M5. Colonies were selected and grown to be sufficiently turbid, 20% glyc-
erol/PBS stocks were created and stored in a -80°C freezer.

Colonies were selected for whole-genome sequencing based on pyro-sequencing of the 16S region which provides a rough es-
timate of genus level designation. For each donor, only colonies that had a sequence identity threshold of less than 99% from CD-Hit
(v. 4.8.1) were selected for whole-genome sequencing.®” Bacterial genomic DNA was extracted using QlAamp DNA Mini Kit
(QIAGEN) according to manufacturer’s manual. The purified DNA was quantified using a Qubit 2.0 fluorometer. 1000ng of each
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sample was prepared for sequencing using the QlAseq FX DNA Library Kit (QIAGEN). The protocol was carried out for a targeted
fragment size of 550bp. Sequencing was performed on the MiSeq or NextSeq platform (lllumina) with a paired-end (PE) kit in pools
designed to provide 1-3 million PE reads per sample with read length of 250 or 150 bp. Adapters were trimmed off with Trimmomatic
with following parameters: the leading and trailing 3 bp of the sequences were trimmed off, quality was controlled by a sliding window
of 4, with an average quality score of 15 (default parameters of Trimmomatic). Moreover, any read that was less than 50 bp long after
trimming and quality control were discarded. The remaining high-quality reads were assembled into contigs using SPAdes
(v3.14.0).°° The primers associated with 16S and whole genome sequences are as follows:

Primer pair Forward primer (5'—>3’) Reverse primer (5’—>3’) Trials
8F-1492R°*%° AGA GTT TGA TCC TGG CTC AG GGT TAC CTT GTT ACG ACTT 16S rRNA full gene length
533F-907R°" GTG CCA GCA GCC GCG GTAA CCG TCA ATT CMT TTRAGT TT Sanger Sequencing, V4-V5

Taxonomic classification of the assembled contigs was performed with the following methods: (a) Kraken2 (v2.1.1); (b) full/partial
length 16S rRNA gene from each isolated colony’s assembled contigs is extracted and input into BLASTn (v2.10.1+) to query against
NCBI’s RNA RefSeq database.®®®° Top five hits for each query are manually curated to determine an isolate’s identity, with identity
and coverage cutoff both at 95%; (c) GTDB-Tk (v1.5.1).”° Final taxonomy is determined by the consensus of the three methods. Any
colony that did not match initial pyro-sequencing taxonomy or lacked consensus are excluded from the commensal strain bank.

Metabolic profiling of strains

Strains were grown in Brain Heart Infusion media supplemented by cysteine (BHIS) until sufficiently turbid and then spun down. Su-
pernatant samples were frozen at -80°C prior to extraction. Samples were thawed and 4 volumes of extraction solvent (100% meth-
anol spiked with internal standards: Dg-succinate (1 mM), Ds-phenol (0.025 mM)) was added to the liquid sample (1 volume) in a mi-
crocentrifuge tube. The raw peak area of the internal standards were averaged for peak normalization. Tubes were then centrifuged at
-10 °C, 20,000 x g for 15 min and supernatant was used for subsequent metabolomic analysis. Compounds were derivatized with
pentafluorobenzyl bromide (PFBBY) as described by Haak et al. with the following modifications.”' The metabolite extract (100 pL)
was added to 100 mM borate buffer (100 uL, pH 10), 100 mM pentafluorobenzyl bromide in acetonitrile (400 uL), and n-hexane
(400 pl) in a capped mass spectrometry autosampler vial. Samples were heated in a thermomixer C (Eppendorf) to 65 °C for 1
hour while shaking at 1300 rpm. After cooling to room temperature, samples were centrifuged at 4 °C, 2000 x g for 5 min, allowing
phase separation. The hexanes phase (100 ulL) (top layer) was transferred to an autosampler vial containing a glass insert and the vial
was sealed. Another 100 uL of the hexanes phase was diluted with 900 uL of n-hexane in an autosampler vial. Concentrated and
dilute samples were analyzed using a GC-MS (Agilent 7890A GC system, Agilent 5975C MS detector) operating in negative chemical
ionization mode, using a HP-5MSUI column (30 m x 0.25 mm, 0.25 pm; Agilent Technologies 19091S-433Ul), methane as the reagent
gas (99.999% pure) and 1 plL split injection (1:10 split ratio). Oven ramp parameters: 1 min hold at 60 °C, 25 °C per min up to 300 °C
with a 2.5 min hold at 300 °C. Inlet temperature was 280 °C and transfer line was 310 °C. Data analysis was performed using
MassHunter Quantitative Analysis software (version B.10, Agilent Technologies) and the 50 targeted compounds—spanning
SCFA, BCFA, amino acid, aromatic, hydroxylated fatty acid, organic acid, indole, and additional subclasses—were identified by
comparison to authentic standard m/z, retention time and fragmentation pattern. Normalized peak areas were calculated by dividing
raw peak areas of targeted analytes by averaged raw peak areas of internal standards. The compounds chosen within the PFBBR
panel represent mechanisms known to be important in health and disease and were compiled from well-known mechanisms in liter-
ature and human, murine, and in vitro datasets collected within the Duchossois Family Institute (DFI).

Motility assay for E. rectale isolates

Onday 1, BHIS media (250mL dH20, 9.25g BHI Media, 2.5mL cysteine solution (1g cysteine in 10mL dH20)) was made and aliquoted
into 50 mL conical tubes. Tubes were cycled into anaerobic chamber (Coy) 24 hours prior to the experiment. Caps on tubes were left
loose to allow for equilibration to the anaerobic environment and to release excess oxygen that may impact strain growth. Onday 2, a
serological pipet was used to aliquot 5 mL BHIS into 20 mL conical tubes. Glycerol stocks of E. rectale strains were cycled into the
anerobic chamber; media was inoculated with strains in triplicate and placed in a 37° incubator in the anaerobic chamber. ODggo Was
measured every 12 hours for 48 hours for each tube of inoculated media by sampling from the top of the culture (taking 100uL from the
top 1mL of the 5mL cultures). During this time, each tube was also observed for pellet formation. After 48 hours of incubation, cultures
were briefly vortexed to disseminate any pellet formed at the bottom of the tube. Samples were then collected from the top of each
culture (100uL from the top 1mL) and measured for their ODggg every thirty minutes for 180 minutes after vortex.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic trees of strain bank
The 16S sequence was isolated from each strain in the commensal strain bank. All 16S sequences were aligned with Mafft (v7.520)
creating a multiple sequence alignment of 1521 features and 335 unique sequences.’” This alignment was then input to phyml
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(v3.3.20200621) with these command options: “./phyml -dnt -mHKY85 -fe -o tlr —search SPR —r_seed 123456 —rand_start -n_rand_
starts 3 -no_memory_check —bootstrap -4 -i BB669_16S.phy”.”® Redundant sequences were placed into the final tree by PhyML at
distance zero from their identical representative in the tree.

For Bac120, the fastafiles for each isolate was input to the gtdbtk (v2.3.0) ‘identify and align’ pipeline to create a multiple sequence
alignment with the Bac120 feature set comprising 5,035 features, with 311 unique sequences.”* This alignment was input to PhyML
(v3.3.20200621) with these command parameters: “./phyml -daa -mLG -fe -o tlr —search SPR —r_seed 123456 —rand_start -n_rand_
starts 3—-no_memory_check -bootstrap -4 -i BB669_Bac120.phy”.”® Redundant sequences were placed into the final tree by PhyML
at distance zero from their identical representative in the tree.

Spectral distance and spectral groups
Spectral groups and spectral distance are based on Singular Value Decomposition (SVD), which is a matrix factorization method that
is a generalization of Principal Components Analysis (PCA). In the main text, we use the term ‘principal components’; we note that
principal components are also called ‘spectral components’, ‘modes of variation’, or ‘eigenmodes’ in the literature. These terms all
describe the same mathematical concept.

In general, SVD factorizes a real matrix M into three matrices according to the following equation:

M = UsvT (Equation 2)

In Equation 2, U is termed the left-singular vector (LSV) matrix, = is a diagonal matrix of singular values, and V is termed the right-
singular vector matrix. If M is a matrix of n systems (rows) described by m features (columns) where n <m; Uis ann X n matrix where
rows are systems, columns are LSVs, and each entry is the contribution of a given system to an LSV; X is ann X m matrix where the k"
diagonal entry is the k™ singular value and all off-diagonal entries are 0; and V is an m x m matrix where rows are features, columns
are RSVs, and each entry is the contribution of a given feature to an RSV. VT in Equation 2 is the transpose of V. A ‘spectral compo-
nent’ is the axis specified by the k' singular value and is the same as a ‘principal component’ from PCA, or ‘eigenmode’, or ‘mode of
variation’. The relationship between SVD and PCA is that PCA is performed only on either the rows or the columns of M. Therefore,
matrices U and X can be multiplied together to form P which are exactly the principal components of matrix M.

P =Uz (Equation 3)

As an example, the diversification trajectory shown in Figure 1A is a representative of the toy models we used to conduct our anal-
ysis. In Figure 1A, each taxon in the alignment is defined by a ‘genotype’ comprised of fourteen features that are either a ‘1’ or a ‘0’;
each taxon is created from a series of three sequential diversification events. Collectively, the alignment of taxa represents extant
diversity. The ancestral root is defined as a genotype of all ‘1°. The first layer of diversification from the ancestral root is defined
by two separate mutations in positions 1 and 2. The second layer of diversification mutates positions 3 through 6 to create sub-pop-
ulations. The third layer of diversification mutates positions 7 through 14 to create the extant diversity of taxa—eight taxa in total with
diverse genotypes.

PCA on the alignment of taxa yielded eight spectral components (Figure 1B). The extent to which each taxon contributes, or ‘pro-
jects’ onto each spectral component is shown in Figure 1C. When visualizing the contribution of each taxon onto each spectral
component, we observe that taxa arising from a common broad layer of diversification contribute similarly to the first two spectral
components while those arising from common finer layers of diversification (the second and third diversifications) contribute similarly
to deeper spectral components.

We translated our finding into a mathematical entity by computing the ‘spectral distance’ between two taxa. The spectral distance
between two taxa, i and j, on spectral component k is

SDj = (Equation 4)

where Pf‘ is the projection of taxa i onto spectral component k and Plk is the contribution of taxa j onto spectral component k. We
show an example of a pattern of spectral distances in Figure 1D where taxon ‘a’ is the reference. See that taxon ‘a’ and all other
taxa share the same projection onto the first spectral component. As such, the spectral distance between ‘a’ and any other taxa
is zero at spectral component 1. However, at spectral component 2, ‘a’ continues to share the same projection as taxa ‘b’, ‘c’,
and ‘d’, but taxa ‘e’, ‘', ‘g’, and ‘h’ have a different projection onto spectral component 2. Therefore, the spectral distance between
‘a’and ‘e’, ‘f’, ‘g’, and ‘h’ is non-zero at spectral component 2 but still zero for ‘b’, ’c’, and ‘d’.
We next defined the ‘cumulative spectral distance’ between two taxa from the first to k' spectral component as
k—
SD;* = ‘P" P‘" ’P’ - P/" (Equation 5)

r=
where r denotes the index of each spectral component ‘shallower’ than spectral component k (i.e., each spectral component with an
associated singular value greater than the k" singular value). The cumulative spectral distance pattern of all pairs of taxa with taxa ‘a’
as one member of the pair is shown in Figure 1D. Computing the cumulative spectral distance across all spectral components for all
pairs of taxa illustrated a distinct tree-like pattern of partitioning between taxa.
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Our key finding from Figure 1D, that groups of sequential spectral components collectively described different layers of precedent
diversifications, motivated ‘renormalizing’ the spectral components into groups of spectral components harboring the same percent
data-variance (Figure 1E, left panel). Spectral component groups were thus defined based on the natural log4q difference between
subsequent singular values. The rationale behind this choice was to group together spectral components that are relatively similar in
their measure of percent-variance explained. To reduce effects at very small singular values, a pseudo-count of 1 is added to each
singular value. The difference between each subsequent singular value is expressed as

Ay = In(Ek_1,k_1 + 1) — In(Ek,k + 1) (Equation 6)

Then, the k" component was chosen to start a new spectral group only if the difference between the (k — 1) and k" component
was greater than a manually chosen threshold 6,

K = {k| A > 6} (Equation 7)

For our in-silico toy models, the threshold § was 0 and therefore any drop in explained variance was defined as a new group of
spectral components. For real biological data described in the main text, the threshold 6 was chosen as 1.5 times the third quantile
of these natural log differences (6 = 1.5 x Q3(A)) as an approximation for selecting the only the largest drops in explained variance.
The spectral distance computed across spectral component groups was defined as

SD§ = Z‘P? - P’g)/z (Equation 8)

geG

where G is the total set of spectral component groups, g is a specific spectral component group within G, and | -|,, denotes the /»
norm also known as the Euclidean distance.

Measuring the accuracy of Spectral Trees

We sought to assay the robustness of Spectral Trees to (i) size of the alignment and (ii) number of features describing each system in
the alignment. To perform this test, we used GoTree v0.4 (https://github.com/evolbioinfo/gotree) to create 7 separate reference
‘ground truth’ trees of taxa comprising either 16, 32, 64, 128, 256, 512, or 1,024 leaves.”® Each tree was then input into SeqGen v
1.3 (https://github.com/rambaut/Seq-Gen) which produced multiple sequence alignments (MSAs) where rows were leaves and col-
umns were features describing the leaves.”® SeqGen uses a Markov process considering the branching pattern of the tree to create a
vector of features for each leaf. Elements of the vector are the characters ‘A’ and ‘T’, and the Markov process uses uniform proba-
bilities to flip between these characters at each branch point in the tree. For each of the 7 trees, we generated 7 MSAs with SeqGen,
where each MSA contained either 16, 32, 64, 128, 256, 512, and 1024 features. Thus, our analysis spanned 49 total MSAs.

We compared the topology of Spectral Trees against ground-truth defined by GoTree using an F-score—the harmonic mean of
precision and recall. Precision between two trees is defined as the proportion of predicted branches in the Spectral Tree that are
also in the ‘true’ tree. Recall is defined as the proportion of branches in the ‘true’ tree that are also in the Spectral Tree. F-score ranges
between 0 to 1, where 1 indicates complete identity between the two trees and 0 indicates no commonality between the two trees.

Our results are shown in Figure S3. We found that for the majority of the parameter space, the F-statistic was near 1. In the limit that
the number of features was less than the number of taxa, the F-statistic was uniformly near 0. This distinction in F-statistic based
on the parameter space arises from the scenario where the number of features is the limiting descriptor relative to the number of
taxa in the alignment. The physical interpretation of this regime is that the number of features describing each system is substantially
limited compared to the diversity of systems available for sampling. In this case, the information content of the set of features is ‘over-
written’ by the diversity of taxa, thereby erasing patterns of covariation originating from phylogenetic histories. A biological process
that is consistent with this regime is if the recombination rate is extremely high relative to speciation events—a scenario that has been
put forth as a plausible scenario for bacterial phylogenomic trends.®'+""+"®

Mutual Information (MI) calculation

We sought to elucidate where information regarding the different generations of diversifications lay across the set of spectral com-
ponents. We conducted this analysis by first defining sequential windows of spectral components across all nine spectral compo-
nents (components 110 3,2to04, ..., 7t09). For each spectral window, we isolated the corresponding LSVs from the U matrix defined
by Equation 2. This results in several sub-matrices defined by taxa on the rows, LSVs on the columns, and each entry being the contri-
bution of each taxon onto each LSV. For each sub-matrix constructed from U, we computed the Spearman correlation between all
pairs of taxa across the set of LSVs defined in the sub-matrix (‘spectral correlations’). As a concrete example, for the first spectral
window comprising spectral components 1 to 3, the U submatrix is defined as taxa (rows) and the first three columns (LSV1 to
LSV3) of the U matrix. Then, to compute the spectral correlations between all pairs of taxa within LSVs 1 to 3, we computed the
Spearman correlations between all pairs of rows in the sub-matrix. The result is a taxon-by-taxon spectral correlation matrix where
each entry is the Spearman correlation measured between two taxa across spectral components 1 to 3. Defining all taxon-by-taxon
spectral correlation matrices across all spectral windows creates a three-dimensional tensor, R, defined by taxa (rows), taxa (col-
umns), and spectral windows (z-axis) where each entry in the tensor is the spectral correlation between two taxa within a spectral
window. Separately, we created a second tensor, G, where rows are defined as taxa, columns are defined as taxa, the z-axis is
each generation (‘FO’, ‘F1’, ‘F2’, or ‘F3’), and entries in the tensor are a ‘1’ if two taxa are grouped within the same cluster at a given
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generation or ‘0’ if two taxa are not grouped within the same cluster at a given generation. We then computed the mutual information
(MI) between each face of the R tensor with each face of the G tensor. This computation interrogated the information shared between
spectral correlations between taxa and shared generational history. The MI was calculated as

- _ (Mo m i
MI(r|G) = H(r) ( S H) + NH(n)) (Equation 9)
where H(r) is a measure of entropy and is defined as
H(x) = 109, (Apw) — Y _P(X6)l0gs (P (X5)) (Equation 10)
b

Pp(xp) is the proportion of pairs that fall into a particular bin within a distribution of x, values; we use a bin-width of 0.01 Ay, to
construct 200 bins across the distribution of correlation values ranging from -1 to 1; r; is the distribution of spectral correlations
across taxonomic pairs that are descendants of the same ancestor; n; is the number of pairs in ry; rp is the distribution of spectral
correlations across taxonomic pairs that are not descendants of the same ancestor; ng is the count of those pairs within each bin;
N is the total number of pairs. The meaning of this calculation is a measure of the extent to which knowing the distribution of spectral
correlations within a spectral window between two taxa indicates the shared ancestral history of two taxa.

Recreating the alignment
We leveraged a central property of Singular Value Decomposition (SVD) and PCA—their linearity —to isolate the statistical information
in distinct principal components. We can rewrite Equation 2 as

M = Zakukvf{ (Equation 11)
k

where oy is the K" singular value and u, and Vi, are the K" left and right singular vectors. Each product that is being summed in Equa-
tion 11 is a rank 1 matrix because it produces a matrix from the individual vectors of u,V, that is scalar multiplied by the number o.
Using Equation 11, we recreated the original alignment shown in Figure 2A but only considering the information contained in principal
components 5 to 8. This process is shown in Figure 2F. Focusing on position 5 again, we found that the value of position 5 was
adjusted in the recreated alignment reflecting the separate, nested contexts of diversification (Figure 2G). Thus, by considering in-
formation contained across all principal components, the Spectral Tree accurately resolved both broad and context-dependent, finer
patterns of diversification.

Creating a Spectral Tree across UniProt

Construction of the full alignment of 7,047 UniProt reference proteomes annotated by 10,177 Orthologous Gene Groups was previ-
ously described in Zaydman et al.>° Then using this alignment, inferred trees of taxonomic relatedness (‘Spectral Trees’ in the main
text) are generated using four steps.

Step 1: A reference pairwise spectral distance matrix SD is created from Equation 8 for all pairs of taxa comprising a matrix M.

Step 2: A reference tree ST,s is generated via hierarchical clustering using the NeighborJoining method of phylogenetic tree
building”®

Step 3: A set of 100 bootstrap trees is generated using steps 1-2. For each bootstrap, we replace the original matrix M with a boot-
strap matrix Mpoot by sampling features (columns) with replacement to maintain the original dimensions of M. This procedure first
generates a pairwise distance matrix SDpoot from the matrix Mpoot, and then generates a tree STyo0t Using the NeighborJoining
algorithm.

Step 4: The reference tree ST, and the bootstrap trees are then compared with transfer bootstrap expectation (TBE) as described
in Lemoine et al.?° TBE ranges from 0 to 1 where 0 indicates no similar branches in any bootstrap tree, and 1 indicates the exact
branch was found across all bootstrap trees.

The result of implementing these four steps generates a Spectral Tree where each branch of the tree has an associated measure of
support as defined by TBE. The Spectral Tree associated with the alignment in Figure 3A is shown in Figures 3A and 3C.

MI between Spectral Tree and phylogeny

We first created 100 ‘cuts’ of the tree where each cut is equally spaced across the depth of the tree. The first cut is defined at the root
of the tree forming a single cluster comprising all taxa; the last cut is defined at the terminal branches of the tree forming as many
clusters as there are taxa. For each cut, we form two membership vectors C and T where each element in the vector represents
a pair of taxa in the tree. C is a ‘1’ if two taxa belong to the same tree cluster and a ‘0’ if not. T is a ‘1’ if two taxa share a property
(i.e. belong to the same NCBI taxonomic designation or come from the same donor) and a ‘0’ if not. T is constructed for (i) all taxo-
nomic designations spanning ‘Phylum’ to ‘Species’ in NCBI, (ii) all taxonomic designations spanning ‘Phylum’ to ‘Species’ in GTDB,
and (iii) identity of donor. We then calculate the mutual information (MI) between C and T by the following equation:

MI(C,T) = H(C) + H(T) — H([C,T]') (Equation 12)
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where H(x) = — > p(xp)log,(p(xp)) represents the Shannon entropy; p(x) is the proportion of x that is equal to either ‘0’ or ‘1’
be 0,1

respectively in the distributions defined by either C or T. H(|C, T]t) is the joint entropy of C and T. The ‘Cumulative Ml density’ plotted
in Figures 3B and 4D is defined by adding the Ml for each subsequent deeper cut of the tree and dividing by the total sum of Ml across
all cuts. NCBI phylogenetic strings were mapped to NCBI taxonomy IDs following methods described in Zaydman et al.*°

To measure uncertainty in MI, we bootstrapped the Ml calculations. For a given Ml between C and T, pairs of taxa (matched el-
ements of C and T) are sampled with replacement to the same total number of pairs. As an example, for 10 choose 2 pairs
(n=45), 45 pairs are sampled with replacement. This bootstrapping is performed 50 times and the cumulative mean + 2 standard de-
viations of Ml is plotted as ribbons.

Projecting CSB into the Spectral Tree

Genome sequences of all strains from the commensal strain bank were put through EggNog mapper (emapper 5.0) and their pro-
teomes were annotated for their OGG content across the same set of OGGs defining the UniProt reference proteome database
(n=10,177).2** Any OGG measured in UniProt but not in the commensal strain bank was imputed as a ‘0’ count. From Equation 2,
we calculated the principal components defining covariation amongst the UniProt reference proteomes, PU"Frot as

puniProt _ /OGG |/UniProt (Equation 13)

where D€ is the 7,047 UniProt reference bacterial proteomes annotated by their 10,177 OGGs. We next defined B°C as the matrix
of commensal strain bank strains annotated by their OGGs. Therefore from Equation 3,

pCSB _ gOGG \UniProt (Equation 14)

where P°SE is a matrix of commensal strains (rows) by 7,047 principal components (columns) that collectively define the structure of
bacterial co-evolution in the UniProt database; each entry is the contribution of each commensal strain bank strain onto each prin-
cipal component.

SLE LASSO model training and validation

To establish a training and validation set, we selected all strains belonging to the 11 species with 20 or greater biological replicates
(n=356), and then further subset to 75% of those strains maintaining relative proportions of species groups (n = 267) with the remain-
ing 25% (n = 89) used as a validation set.

To train the LASSO model, we first generated a Spectral Tree from the training set and created an associated SLE matrix (SLEyain,
267 rows by 266 columns) per the diagram in Figure 6A. Each strain was labeled by the fold-change (log2FC) of a specific metabolite.
We next estimated the linear coefficients relating SLEs with relative change in metabolite concentration across varying degrees of
regularization by

W = argmin( |SLEyain W — yl, + A|w|;) (Equation 15)

where W is the estimated coefficients, y is the log2FC of a metabolite, and 1 is the regularization parameter swept from 10° to 102,

We made predictions for the validation set in two steps. First, we found the nearest neighbor in the training set for each validation
strain using spectral distance. Second, we input the SLE of the nearest neighbors into the SLE-LASSO model trained via Equation 15.
Collectively, the out-of-fold predictions for one statistical resampling are described by

y = SLEin W (Equation 16)

where y represents the out-of-fold predictions for a single fold; SLE,.;, contains the nearest neighbors in the training set to each test
set strain; and w are the SLE-LASSO coefficients learned from the full training set. This setup for making out-of-sample predictions is
similar to a K-nearest-neighbors model in that we use the features contained in our training set to make predictions. However, by
incorporating learnable weights for different sections of the Spectral Tree we tune the number of neighbors the prediction is averaged
across dependent on the phylogenetic context of each strain.

We repeat creating a training set, creating an associated Spectral Tree, creating an associated SLE,;,, and making out-of-fold pre-
diction across 20 repartitions comprising 4-folds per data partition across 5 re-partitions. This validation procedure guarantees 5 out-of-
fold predictions per taxa. We measure the performance of the model using the out-of-fold adjusted R? for each repartitioning.

Separability of donor metabolic variation

Each of the 7,040 models trained in STAR Methods: SLE LASSO model training and validation—one model for each metabolite
(n=32), species (n=11), and repartition of train-test sets (h=20)—was tuned with regularization parameter A to maximize predictive
capacity (adjusted R?) and sparsity (maximum A for given maximum predictive capacity) for each metabolite-species pair. In Fig-
ure 7G, the maximized out-of-fold adjusted R? per species was plotted on the y-axis. For each of the 7,040 out-of-fold test sets,
we calculated a ‘separability index’

(Equation 17)

inter-donor variation
2\ intra-donor variation
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where the numerator, ‘inter-donor variation’. is the standard deviation of the mean metabolite concentration for strains belonging to
each donor, and the denominator, ‘intra-donor variation’, is the mean of the standard deviations of metabolite concentration for
strains belonging to each donor. The ratio between inter-donor and intra-donor variation in metabolite concentrations defines
how separable the measured metabolite concentrations are by knowing which donor a strain of a given species is collected from.
To control for cases where there is very low or no measured metabolite for a given metabolite-species-resample test set a regula-
rization constant of 2‘—7 is added to both the numerator and denominator before taking the log,. The final separability index is defined as
the log, value of the ratio. Values greater than 0 indicate the metabolite concentrations are separable by donor; values less than zero
indicate that the metabolic variability of strains within a donor is inseparable from the distributions of other donors.

Significance of enrichment or depletion for models relative to adjusted r? value of models was performed with a Fisher’s exact test
with Bonferroni correction on a contingency table that tallies the number of models with positive versus negative predictive capacity
and positive versus negative separability index. The tallied values are compared against the expected counts under the null of no
association between predictive capacity and separability index. P-values are reported in Figure 7G.
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