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SUMMARY
The human gut microbiome contains many bacterial strains of the same species (‘‘strain-level variants’’) that
shapemicrobiome function. The tremendous scale andmolecular resolution at which microbial communities
are being interrogated motivates addressing how to describe strain-level variants. We introduce the ‘‘Spec-
tral Tree’’—an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater
than 7,000 diverse bacteria. Using the Spectral Tree to describe over 600 diverse gut commensal strains that
we isolated, whole-genome sequenced, and metabolically profiled revealed (1) widespread phylogenetic
structure among strain-level variants, (2) the origins of subspecies phylogeny as a shared history of phage
infections across humans, and (3) the key role of inter-human strain variation in predicting strain-level meta-
bolic qualities. Overall, our work demonstrates the existence andmetabolic importance of structured phylog-
eny below the level of species for commensal gut bacteria, motivating a redefinition of individual strains ac-
cording to their evolutionary context. A record of this paper’s transparent peer review process is included in
the supplemental information.
INTRODUCTION

Microbial communities (‘‘microbiomes’’) are ubiquitous across

diverse environments, spanning oceans to individual humans.1–4

Onemicrobiome relevant to human health is the gutmicrobiome:

the trillions of microorganisms residing along the intestinal tract

of humans.5,6 A number of studies have demonstrated the signif-

icance of the gut microbiota—the bacteria within the micro-

biome—for influencing host physiology and predilection for

developing several diseases.7 This has led to many efforts

describing the composition of human gut microbiotas and un-

derstanding how composition affects microbiome function. As

interrogating microbiomes has become easier, the incredible

taxonomic complexity of microbiotas and associated functional

consequences have become more appreciated than ever

before.8,9

Studies focused on cataloging microbiota composition have

revealed the extensive presence of strain-level variants: strains

that belong to the same species but are genetically different.10–12

Moreover, several case studies have highlighted the direct
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impact of individual strains on gut microbiome function and

host health. For instance, reconstitution of the infant gut micro-

biota using Bifidobacterium longum subspecies infantis—a

strain of B. longum that metabolizes human milk oligosaccha-

rides—has been shown to repair intestinal inflammation due to

acute malnutrition in humans.13–15 In another example, profiling

different strains of Bacteroides ovatus showed differential ca-

pacity in inducing immunoglobulin A levels.16 With respect to in-

fluence on bacterial fitness in the gut, interrogation of Bacter-

oides and Parabacteroides strains revealed strain-level

preferences for binding polysaccharides.17 Many similar vi-

gnettes, from understanding the etiology of food-borne out-

breaks to characterizing the repair of the gut microbiota

following antibiotic exposure, have highlighted the functional

role of strain-level variants.18,19

As the functional importance of bacterial strains has become

increasingly appreciated, an outstanding question is how should

an individual strain be described? If considering complete ge-

nomes at amino acid resolution, almost every newly procured

strain is a strain-level variant because it is likely to be different
uary 19, 2025 ª 2024 The Authors. Published by Elsevier Inc. 1
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in someway from other strains of the same species. If instead the

whole genome is compressed into a more practically manage-

able description, like the 16S rDNA sequence or sets of marker

genes, strains become collapsed into their phylogenetic descrip-

tion obscuring potentially important adaptive changes that make

strains of the same species functionally different from one

another. With respect to classifying strains by biological func-

tion, recent studies that created banks of sequenced and pheno-

typed gut bacterial strains have shown a common trend: pheno-

typic differences between strains of the same species are

difficult to understand.20–22 As an example, it has been shown

that metabolic capacities of bacteria follow coarse phylogeny

but that variation among individual strains within a species is

mostly unrelated to metabolic variability.20 Collectively, these

observations have led to the status quo strategy to functionally

interrogate each and every new strain because structure

amongst strain-level variants, i.e. ‘‘subspecies phylogeny,’’ is

difficult to ascertain and unlikely to be associated with strain-

level phenotype.

A key limitation of performing comparative analysis on strain-

level variants within strain banks is the tremendous degree of

phylogenetic under-sampling compared with the bacterial tree

of life. Strain banks usually contain strains from a specific eco-

niche—only from the human gut for instance—and therefore

reflect a small portion of phylogenetic diversity. While carefully

curated reference trees of bacteria have been suggested as con-

structs to address phylogenetic limitations of strain banks, these

trees are often also subset to strains from the specific econiche

of interest. This limitation skews our understanding of gene con-

tent that is under selective pressure and likely associated with

conserved phenotypes versus gene content that is allowed to

vary and likely associated with the ability to adapt to different

econiches.23

The existence of large databases of sequenced bacteria moti-

vated a hypothesis that we tested here. Namely, that by

leveraging the vast diversity of sequenced strains procured

from many different environments in an unbiased way, we could

better resolve evolutionary relationships. That is, constraints

gleaned from the evolutionary record across the kingdomBacte-

ria could be used as a Bayesian prior for contextualizing differ-

ences between strains procured from a single environment—

the human gut.24,25 If achieved, this space of evolutionary

relationships may (1) resolve fine-grained differences between

strains of the same species, (2) allow testing whether phenotypic

qualities specific to strain-level variants could be learned from

genetic information, and (3) be a general construct for character-

izing bacterial strains that could be dynamically updated asmore

strains are collected and sequenced.

We created a strain bank of 669 gut commensal strains that

were isolated from fecal samples collected across 28 healthy hu-

man donors, whole-genome sequenced, and metabolically pro-

filed. Consistent with previous studies, traditional analysis of this

strain bank using 16S rDNA sequence, and well-known, stan-

dard sets ofmarker genes could not resolve genomic differences

between strain-level variants or their associated metabolic qual-

ities. We therefore developed an approach for inferring evolu-

tionary distance between bacteria based on patterns of genomic

covariation. Key to developing our approach was the theoretical

finding that the whole spectrum of principal components (PCs)
2 Cell Systems 16, 101167, February 19, 2025
(‘‘eigenspectrum’’) measured across extant diversity, including

components typically discarded as noise, encoded a tree of

relatedness that matched how two species co-evolve through

sequential diversifications. Thus, covariation among extant di-

versity reflected constraints on co-evolution (‘‘co-evolutionary

constraint’’). As our statistical approach was computationally

fast, we applied it across >7,000 non-redundant bacterial pro-

teomes isolated from many diverse environments to form a

Spectral Tree of bacterial relatedness. We found that the Spec-

tral Tree closely resembled known patterns of bacterial phylog-

enies. Examining our strain bankwithin the structure of the Spec-

tral Tree revealed widespread subspecies phylogeny across gut

commensal strains. Functional analysis showed that subspecies

phylogeny was driven by a history of host phage exposure

among groups of donors and was associated with a loss of

well-conserved, biologically important genetic machinery.

Finally, we used the Spectral Tree to predict strain metabolic ca-

pacity, finding that sampling strain-level variants among different

donors (inter-donor) was key for building accurate predictive

models of metabolism compared with strain-level variants pro-

cured from the same donor (intra-donor). We found this result

was due to "inter-donor" strain-level genomic differences being

substantially greater than "intra-donor" strain-level genomic

differences.

Together, our findings demonstrate the existence of function-

ally significant subspecies bacterial phylogeny in the human gut

revealed from analysis of co-evolution across the bacterial

kingdom. Our work motivates a reparameterization from strain

genomes to describing strains by their evolutionary context.

RESULTS

A bank of 669 metabolically profiled human gut
commensal strains
We isolated and sequenced over 1,000 commensal bacterial

strains from the feces of 28 healthy human volunteers. Our re-

sulting bank of gut commensal strains (‘‘commensal strain

bank’’ from here on) comprised 669 diverse strains that we

whole-genome sequenced (Figure S1A; Table S1) (STAR

Methods). The commensal strain bank was enriched for gram-

negative anaerobes within Lachnospiraceae, Bacteroidaceae,

and Bifidobacteriaceae families (Figure S1B). We created phylo-

genetic trees of our strain bank defined by (1) the 16S rDNA

sequence and (2) 120 proteins used to create the phylogenetic

relationships in Genome Taxonomy Database (GTDB)

(‘‘Bac120’’)—the state-of-the-art database widely used for

phylogenetic determination of bacterial strains (STAR

Methods).26 We found that both phylogenetic trees robustly

defined coarse phylogenetic differences but were unable to

resolve differences between strains belonging to the same spe-

cies (Figure S1C).

We also metabolically profiled all strains within the strain bank

across 50 targeted metabolites comprising amino acids, aro-

matics, branch-chained fatty acids, indoles, phenolic aromatics,

and short-chain fatty acids (SCFAs) (Table S2) (STAR Methods).

Metabolite concentrations relative to a standard in media (Brain

Heart Infusionmedia supplementedwith cysteine [BHIS]) without

bacterial cultureweremeasured. Thesemetaboliteswerechosen

to beprofiled because they reflect particularly salientmetabolites
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with respect to commensal bacterial fitness, human gut micro-

biome function, and interaction of the microbiome with the

host.27,28 Moreover, unlike other molecular signatures that are

important but unable to be resolved at sufficiently high resolution

for quantitative comparative studies like complex polysaccha-

rides, each of these metabolites was associated with a unique

mass-to-charge ratio, thereby facilitating comparativemetabolo-

mics. We found extensive variation among the metabolic capac-

ity of strains from the same species (Figures S1D and S2).

Together with the inability of canonical phylogenetic analysis to

resolve strain-level variation, our findings were consistent with

previously published studies illustrating the difficulty in relating

strain-level variants with their metabolic capacity.20

Defining evolutionary distance using spectral inference
To test our hypothesis that evolutionary relationships across a

wealth of sequenced bacteria could aid in revealing strain-level

genomic differences within our strain bank, we turned to a large

database of sequenced non-redundant bacterial strains pro-

cured across a diversity of environments. Previous work from

our laboratory described a phylogenomic analysis of the

kingdom Bacteria using all reference proteomes in the UniProt

database (>7,000 strains in total).29,30 Analysis of this database

illustrated that co-evolutionary patterns of proteome variation

defined a hierarchy of phylogeny. Major PCs clustered bacteria

belonging to the same phylum, deeper components class, and

so on until species. Building upon this finding, we reasoned

that the whole PC spectrum of bacterial co-evolution defined

across the UniProt database, including PCs typically discarded

as noise, may be useful for inferring evolutionary distances be-

tween bacteria and resolve fine-grained differences between

strains of the same species. This idea motivated creating a

metric of evolutionary distance between extant taxa based on

statistical patterns of proteome co-evolution.

Developing a definition of evolutionary distance inferred from

patterns of bacterial co-evolution first required studying simple,

manageable models of the evolutionary process. Thus, we used

‘‘toy model’’ simulations of diversification and selection to

explore how PCs could be used to define an evolutionary dis-

tance metric between taxa that are represented by a complex

set of features, like a genome. An example of one such model

is shown in Figure 1A. Here, a ‘‘parent’’ (root) was defined by a

set of features (‘‘genotype’’) and was subject to sequential,

layered diversifications to create an alignment of taxonomic di-

versity. Traditionally, evolutionary simulations are performed us-

ing nucleotide identities (adenine [‘‘A’’], thymine [‘‘T’’], cytosine

[‘‘C’’], guanine [‘‘G’’]) as the basis of variation. In our model, we

defined the basis of variation to be ‘‘A’’/‘‘T’’ for simplicity, and

we also encoded ‘‘A’’ as a ‘‘0’’ and ‘‘T’’ as a ‘‘1’’ basis so that

quantitative analysis could be performed on the model. The

resultant alignment was then subject to principal-component

analysis (PCA) (Figure 1B). The output of PCA is a spectrum of

‘‘PCs’’ ordered by statistical scale: PC1 harbors the most

amount of data variance, PC2 the second-most, and so on.

Each taxon of the alignment and each feature describing a taxon

contribute to each PC to a certain extent.

In general, the shallowest PCs (PC1, PC2, and PC3, for

instance) are thought to contain relevant signal while deeper

PCs are typically discarded as statistical noise. Our analysis of
the alignment in Figure 1A illustrated a different finding. The

taxa arising from a common broad layer of diversification

contributed similarly to the first two PCs, while those arising

from common finer layers of diversification (the second and third

diversifications) contributed similarly to shallow as well as

deeper PCs (Figure 1C). We therefore defined a metric termed

‘‘spectral distance’’ between two taxa:

SDk
ij =

���Pk
i � Pk

j

��� (Equation 1)

where Pk
i is the contribution of taxon i onto PC k and Pk

j is the

contribution of taxon j onto PC k. Plotting the cumulative spectral

distance across all PCs, including those harboring a minutia of

data variance (�1%), defined a tree-like hierarchical pattern of

statistical similarity between taxa (Figure 1D). Moreover, we

found that sequential PCs collectively described different layers

of precedent diversifications. For instance, for the example

shown in Figure 1A, PCs 5–8 harbored the same amount of

data variance and collectively described the third layer of diver-

sification from the parent, as observed in taxa ‘‘a’’ and ‘‘b’’ being

maximally differentiated along PC7 (Figures 1C and 1D). Simi-

larly, PCs 3 to 4 harbored the same amount of data variance

and described the second layer of diversification from the

parent, as observed in taxa ‘‘a’’ and ‘‘b’’ being maximally differ-

entiated from taxa ‘‘c’’ and ‘‘d’’ along PC4 (Figures 1C and 1D).

PCs 1 and 2 independently described the root and the first layer

of diversification, respectively. The result from Figure 1D moti-

vated grouping PCs into ‘‘spectral groups’’ that harbor the

same percent data variance and then computing spectral dis-

tance across the spectral groups (Figure 1E, left) (STAR

Methods). Hierarchical clustering of the resulting pairwise spec-

tral distances across all taxa yielded a tree of taxonomic related-

ness that we termed a Spectral Tree (Figure 1E, right). We found

that for the case in Figure 1A, the Spectral Treematched existing

approaches of phylogenetic inference spanning maximum-likeli-

hood and Bayesian methods (Figure 1F). The exception to this

finding was Mr. Bayes, which resulted in a star-like pattern of in-

ferred relatedness likely due to the limited size of the alignment.

We next tested whether Spectral Trees resulted in accurate

taxonomic relationships across (1) different sizes of alignments

and (2) different numbers of genotypic features used to describe

each system in the alignment. Synthetic phylogenetic histories

were created in silico, Spectral Trees were generated from the

alignment of taxa for each synthetic dataset, and a measure of

how accurately the resulting Spectral Tree captured the phyloge-

netic history in the dataset was then computed (STAR Methods).

We found that for much of the parameter space we analyzed, the

Spectral Trees closely resembled the ground-truth pattern of

sequential diversifications (Figure S3). The exception to this trend

was in the limit where the number of features was less than the

number of taxa, in which case the Spectral Tree did not match

the ground-truth tree. This is because in the regime where taxa

outnumber the features used to describe taxa, the number of fea-

tures describing each taxon is limited compared with the diversity

of taxa available for sampling. As such, the information content of

the set of features is ‘‘overwritten’’ by the diversity of taxa, thereby

erasing patterns of covariation originating from phylogenetic his-

tories—a scenario that the Spectral Tree is not designed to
Cell Systems 16, 101167, February 19, 2025 3
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Figure 1. Defining a Spectral Tree from extant diversity: An example using a toy model

(A) An in silico model of sequential diversification. An ancestral ‘‘root’’ is defined by a 14-bit string of ‘‘1.’’ Diversification through three generations creates an

alignment of eight ‘‘taxa.’’ Colored bits in the alignmentmatch the color of the generation "F1," ‘‘F2,’’ or ‘‘F3’’ at which variation from a ‘‘1’’ to a ‘‘0’’ was introduced.

(B) PCA of the alignment in (A) yields eight PCs. Percent variance harbored by each PC is shown.

(C) Contributions of each taxon in the alignment from (A) to each PC.

(D) Cumulative spectral distance (y axis) for all pairs of taxa that include taxon ‘‘a.’’ The pattern of cumulative spectral distances resembles a tree-like distribution.

(E) PCs are grouped together based on their percent variance into "spectral groups.’’ For each spectral group, spectral distances are computed between all pairs

of taxa. Spectral distances between all pairs of taxa for each spectral group are displayed and black to blue pixel colors indicate low to high spectral distances.

This information is used to create a rooted Spectral Tree.

(F) Unrooted trees resulting from phylogenetic inference methods applied to alignment in (A).
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capture. A biological process consistent with this regime is when

the recombination rate is extremely high relative to speciation

events—a scenario that has been put forth as a plausible explana-

tion for bacterial phylogenomic trends.31

Spectral Trees resolve convergent paths of
diversification
Our results motivated characterizing situations in which Spectral

Trees were distinct from current methods of phylogenetic infer-
4 Cell Systems 16, 101167, February 19, 2025
ence. Analysis of Spectral Trees across a diversity of alignments

illustrated that Spectral Trees were qualitatively distinct

compared with existing methods of phylogenetic inference in

cases of convergent processes. Convergent evolution involves

two or more taxa possessing the same set of genomic traits

through independent ancestral histories. These convergent his-

tories vastly complicate phylogenetic inference because

genomic diversity no longer increases in a predictable manner

over evolutionary time. Disentangling evolutionary convergence
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Figure 2. Spectral Trees resolve patterns of convergent diversification

(A) The root (F0) is defined by a 9-feature genotype of ‘‘1’’ and subject to three sequential diversification events (F1, F2, and F3), resulting in 18 taxa, and features

can be either ‘‘1’’ or ‘‘0.’’ Colored features in each generation correspond to variation from the previous generation.

(B) Scree plot of nine PCs describing alignment in (A).

(C) Rooted Spectral Tree, unrooted trees resulting from FastME and PhyML.

(D) Alignment of taxa with position 5 highlighted, and taxa are labeled by the group they belong to within the F1 generation (red or blue bar).

(E) Shared information (cumulative mutual information [MI], y axis) between clustering of taxa across sets of PCs (x axis) and clustering defined at the F1 or F2

generations (legend).

(F) Isolation of information contained in PCs 5 through 8 using singular value decomposition (SVD).

(G) Recreated alignment considering information contained only in PCs 5 through 8 with position 5 highlighted. Taxa are labeled in the same manner as (D).
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statistically is particularly problematic when using single features

(i.e., ‘‘gene markers’’) to model ancestral distance because such

approaches, like maximum-likelihood or Bayesian methods, do

not explicitly consider pairwise or higher-order epistasis be-

tween genes and the resulting complex contextual dependence

of gene presence or absence on other genes.32
To understand why Spectral Trees were effective at dealing

with evolutionary convergence, we interrogated a paradigmatic

example of a representative trajectory (Figure 2A). In this

example, the ancestral root (‘‘F0’’) was followed by three

sequential sets of diversifications leading to 18 diverse taxa.

We found that the Spectral Tree of taxa correctly captured the
Cell Systems 16, 101167, February 19, 2025 5
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Figure 3. A Spectral Tree of 7,047 bacteria from UniProt

(A) Workflow for computing a Spectral Tree across all non-redundant bacterial strains within UniProt (n = 7,047). DOGG is the matrix of 7,047 UniProt reference

bacterial strains (rows) annotated by their OGG content (columns) (blue box), and each entry is the number of sequences corresponding to a specific OGGwithin a

(legend continued on next page)
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generative set of diversifications spanning the F1 and F2 gener-

ations, while application of other methods (FastMe and PhyML)

did not (Figures 2B and 2C).

To better understand this result, we analyzed how features in

the alignment were contributing to each PC. As an example, we

considered position 5 in the alignment (Figure 2D). Position 5was

a ‘‘0’’ for all taxa arising from the top branch of F1 and a ‘‘0’’ for

one-third of taxa arising from the bottom branch of F1. Thus, two

separate contexts evolved independently, resulted in a ‘‘0’’ at

position 5—an example of convergence. Using position 5 as a

marker would therefore lead to an incorrect grouping of taxa

arising from different histories together. This is a commonly

encountered problem when considering each genomic feature

in isolation of its genetic context. Generalizing this concept, for

all positions in the alignment shown in Figure 2A, no single posi-

tion was sufficient to describe a single diversification event.

Given this finding, we sought to elucidate where information

regarding the different generations of diversifications lay across

the set of PCs (STAR Methods). We found that the shallowest

PCs were enriched for information regarding a shared history

at the F1 generation, while the deepest set of PCs were enriched

for information regarding a shared history at the F2 generation

(Figure 2E). We then recreated the alignment using only informa-

tion contained within the deepest PCs (Figure 2F) (STAR

Methods). Focusing on position 5 again, we found that the value

of position 5 was adjusted in the recreated alignment reflecting

the separate, nested contexts of diversification (Figure 2G).

Historically, eigendecomposition—the spectral factorization

technique underlying PCA—has been used as a form of dimen-

sion reduction: analyze only the shallowest PCs for significant

biological trends. This use of PCA has stemmed from application

of random-matrix theory (RMT) to biological data.33 Our findings

provide a contrasted result, demonstrating that the whole ei-

genspectrum (spectrum of PCs resulting from PCA) can encode

a Spectral Tree and that the tree is the more complete dimen-

sion-reduced object. Through a detailed mathematical analysis,

we found that the formation of hierarchy as represented in a

Spectral Tree is guaranteed from performing eigendecomposi-

tion on related populations (supplemental experimental proced-

ures Section 1) (Figure S4). Specifically, the deep PCs contain in-

formation that is nested within shallower PCs. Therefore, the

qualities we found regarding convergent processes are not spe-

cific to the toy model in Figure 2A but rather are general proper-

ties of using the eigenspectrum to create trees of relatedness. A

more detailed explanation of comparing standard methods of

phylogenetic inference with creating Spectral Trees using eigen-

decomposition can be found in supplemental experimental pro-

cedures Section 2.

The Spectral Tree built from 7,047 bacterial strains in
UniProt reflects known phylogenetic patterns
We sought to create a Spectral Tree for a large diversity of non-

redundant bacterial strains representative of the kingdom
specific bacterial proteome. Gray box outlines the three computational steps for c

the 7,047 bacteria) colored by phylum per NCBI.

(B) Information shared between clusters of the Spectral Tree, ordered from shall

clusters are enriched for grouping bacteria together by phyla, deepest clusters b

(C) Zoom-ins of Spectral Tree at specific bacterial families.
Bacteria. We turned to the UniProt non-redundant database

comprised of 7,047 strains for this task. To represent bacterial

diversity in a more unbiased and complete manner compared

with 16S or the set of Bac120 gene markers used to define

GTDB, we annotated each bacterium by its orthologous gene

group (OGG) content. OGGs are groups of proteins defined by

the conservation pattern of their amino acid sequences and

have been used previously for phylogenomic comparisons in

bacteria.30,34,35 Our strategy resembles that of pan-genomic

analysis in analyzing the abundance of information within both

‘‘core’’ and ‘‘accessory’’ genomic regions.

We first tested whether building a Spectral Tree across thou-

sands of reference proteomes in the UniProt database would

be computationally feasible. We selected members of the class

Bacteroidia (n = 211), order Oceanospirillales (n = 103), family

Rhodospirillaceae (n = 50), and genusRuminococcus (n = 25) an-

notated with 10,177 OGGs and found that computing a Spectral

Tree required substantially less computational resources than

existing methods of phylogenetic inference (Figure S5). This

result motivated computing a Spectral Tree across thousands

of non-redundant taxa—a goal that is not practically feasible

with current approaches.

We constructed a Spectral Tree for the set of non-redundant

bacterial proteomes in UniProt using an alignment of 7,047 bac-

teria annotated by their OGG content (Figure 3A; Table S3)

(STAR Methods). Analyzing the Spectral Tree at the level of

phylum showed that generally, groups of bacteria belonging to

the same phylum clustered together. Phyla that were consis-

tently monophyletic across GTDB and NCBI, such as Actinobac-

teria and Cyanobacteria, remained monophyletic in the Spectral

Tree (Figures S6A and S6B).26,36 Additionally, phylogenetic rela-

tionships between phyla weremaintained. For instance, the Ten-

ericutes were placed between Proteobacteria and Firmicutes—a

phylogenetic relationship that has been previously described

and represented in bacterial phylogenetic trees.26,37 In another

example, GTDB reclassified Proteobacteria from NCBI into

Pseudomonodota and Desulfobacteria.26 The Spectral Tree

captured this reclassification (Figure S6C). However, there

were notable instances where clusters of bacteria deviated

from their known phylum-level designation. First, there were

two groups of Firmicutes that were separated from each other

and from the main group of Firmicutes. These two outgroups

are the order Bacillales. This split is partially supported by

GTDB’s reassignment of the class Bacilli to phylum Bacilliota.

The exception in our Spectral Tree is that the order Lactobacil-

lales is considered to be more related to the main group of Firmi-

cutes. Second, within the phylum Bacteroidetes, we observed

two major separated classes—Flavobacteriia and Cytophagia.

Third, we found the placement of bacteria belonging to phyla

with representation of less than 100 total members was enriched

in proximity to Bacteroidetes relative to othermajor phyla like Ac-

tinobacteria, Firmicutes, and Proteobacteria. These observa-

tions and discrepancies with respect to NCBI classification are
reating a Spectral Tree from DOGG. Spectral Tree is shown with leaves (each of

ow to deep (x axis), and phylogenetic classification. Shallowest Spectral Tree

y species.

Cell Systems 16, 101167, February 19, 2025 7
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likely due to two factors: (1) the Spectral Treewas built fromOGG

frequency across the entire proteome rather than considering

conserved marker genes and (2) our statistical framework incor-

porates and leverages epistasis between OGGs.

We next performed a systematic analysis of the phylogenetic

distribution of bacteria across the Spectral Tree. To do this, we

measured the mutual information between shared tree depth in

the Spectral Tree and shared phylogeny (STAR Methods). This

analysis revealed how much information about phylogenetic re-

lationships was captured by respecting the clustering of bacteria

created by the Spectral Tree. Our results showed that the topol-

ogy of the tree matched a hierarchy of phylogeny: shallow to

deep Spectral Tree clusters progressively grouped bacteria

from the same phylum, class, order, family, genus, and species

(Figure 3B).Moreover, zooming-in on specific bacteria belonging

to families that are common in the human gut illustrated that the

Spectral Tree captured known phylogenetic relationships at the

species level (Figure 3C). Thus, while we observed certain ex-

ceptions to canonical phylogenetic classifications, overall the

Spectral Tree recapitulated known evolutionary relationships

across thousands of bacterial strains.

Using the Spectral Tree to resolve subspecies
phylogeny within our strain bank
The Spectral Tree of relationships built using bacterial strains

comprising the UniProt database was a statistical space that

captured known evolutionary relationships. In this sense, we

conceptualized the Spectral Tree as an evolutionarily relevant

‘‘latent space’’—an abstract space where distance between ob-

jects scales with a desired property. In our case, the objects are

bacterial proteomes, and the desired property is evolutionary

relatedness. Using this conceptualization, new strains could be

projected into the latent space thereby making the Spectral

Tree a dynamic object capable of incorporating more strains to

reflect the increasing corpus of bacterial sequencing data. We

therefore saw this as an opportunity to characterize our gut

commensal strain bank using the Spectral Tree.

Weannotatedall strains in our strainbankby theirOGGcontent

and projected each strain into the Spectral Tree (Figures 4A, S7,

and S8; Table S4) (STAR Methods). We compared the distances

of all pairs of strains in our strain bank that share the same genus

or species designations computed from (1) the Spectral Tree, (2)

the phylogenetic tree created from the 16S rDNA sequence, or (3)

the phylogenetic tree created from Bac120. We found that for

pairs of strains from the same species, the Spectral Tree uniquely

resolved differences between our strains: the average relative

distance of strain pairs based on 16S and Bac120 trees was

zero, while the same distribution based on the Spectral Tree

was bimodal (Figure 4B). We also found that creating a Spectral

Tree of the commensal strain bank without considering the

UniProt database yielded significantly less separation of strains

at phylogenetic scales that were coarser than species-level des-

ignations (Figure S9). Collectively, these results suggested that

using theSpectral Treebuilt from theUniProt database as a latent

space for characterizing bacteria-resolved phylogenetic relation-

ships, from broad to subspecies-level phylogenetic differences,

between strains in our commensal strain bank.

We next sought to interrogate the structure of strain-level vari-

ation within the Spectral Tree. Focusing on the group of 41Med-
8 Cell Systems 16, 101167, February 19, 2025
iterraneibacter gnavus strains in our strain bank, we found that

the Spectral Tree defined phylogenetic structure through spe-

cies-level designation but also showed statistically significant

non-random clustering among strain-level variants. Notably,

we found a direct relationship between the structure of strain-

level variation and donors fromwhich strains were collected (Fig-

ure 4C, upper). In another example, the 27 strains of Bacteroides

uniformis illustrated the same trend of being clustered by donor

origin (Figure 4C, lower). This result suggested that the Spectral

Tree was defining subspecies phylogenetic structure based

on proteome differences in strains associated with individual

donors.

To test the generality of this result across the entire

commensal strain bank, we computed the mutual information

between strain clusters defined across the Spectral Tree and

whether the clusters shared the same phylogenetic designation

or donor origin. We found that the pattern of strain clustering

across the tree reflected a distinct biological order: shallow clus-

ters reflected broad phylogenetic differences, deeper clusters

reflected finer phylogenetic differences, and the deepest clus-

ters reflected variation between strains of the same species

but isolated and cultured from different donors (Figure 4D).

Thus, our results illustrated two related findings. First, the

Spectral Tree revealed a phylogenetic structure present below

the level of species. Second, this subspecies phylogenetic struc-

ture was associated with diversification in the econiche of

different humans.

In totality, the Spectral Tree contained 41 layers. The layer at

which subspecies phylogeny was defined was layer 26 (Fig-

ure 4D). As the Spectral Tree was built from >7,000 PCs span-

ning over 10,000OGGs, we sought to understand how the Spec-

tral Tree organizes the vast genomic information used as input.

To delineate the pattern of OGGs that define hierarchical rela-

tionships in the Spectral Tree, we identified OGGs that were

significantly differentially abundant between daughter branches

of a given cluster (Figure S10). Interrogating the pattern of

OGGs across clusters in the Spectral Tree, we found that the

Spectral Tree is organized through nested genomic variation.

For instance, variation in OGGs defining the second layer of

the Spectral Tree was nested within OGGs whose variation

defined a cluster in the first layer. This hierarchical pattern

continued until the last layer of the tree (Figure S11A). Crucially,

this property of nestedness enabled explicitly identifying

genomic differences that distinguished clusters of strains—a

property we used to functionally characterize subspecies phy-

logeny as described next (Figure S11B).

Functional and evolutionary characterization of
subspecies phylogeny
What are the origins of structured phylogeny below the level of

species?We used the Spectral Tree to better understand drivers

of subspecies phylogeny within our strain bank. As an example,

our strain bank contained 20 strains of Eubacterium rectale (also

called Agathobacter rectalis) collected from several donors. We

isolated the Spectral Tree branch that separated different groups

of E. rectale strains. As expected per our results in Figure 4D, the

groups of strains clustered by donors from which they were iso-

lated (MSK17 and MSK22 versus MSK16, MSK13, and MSK9;

‘‘MSK’’ stands for Memorial Sloan Kettering, one of the hospitals
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Figure 4. The Spectral Tree reveals subspecies phylogeny in commensal strain bank

(A) Workflow for projecting commensal strain bank into the Spectral Tree (see Figure S7 for detailed steps).

(B) Distributions of relative distances for all strain pairs in the commensal strain bank that are of the same species. Relative distance is defined by either (1) the

Bac120 phylogenetic tree (top), (2) the 16S phylogenetic tree (middle), or (3) the Spectral Tree (bottom).

(C) Following strains ofM. gnavus (upper) and B. uniformis (lower) from shallow to deep branches of the Spectral Tree. Each leaf is a strain colored by the identity

of the human donor from which the strain was collected (see color key, MSK indicates donor from Memorial Sloan Kettering Hospital, and DFI indicates donor

from Duchossois Family Institute, University of Chicago).

(D) Information shared between phylogenetic designation (NCBI or GTDB database) or donor origin and depth of strain cluster in Spectral Tree (x axis). Tree depth

at which 50% of cumulative information regarding shared donor identity is delineated (brown).
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from which donors were recruited and fecal samples were iso-

lated) (Figure 5A). Differences in OGGs between the strains of

E. rectale illustrated a pattern of mutually exclusive presence

or absence. Strains isolated from donors MSK22 and MSK17

harbored gene groups associated with directed motility, with

many gene groups encoding structural elements of the flagellum,

chemotaxis machinery, and associated signaling cascades. In

contrast, strains derived from MSK13 and MSK9 lacked many

gene groups encoding components of motility and instead con-

tained gene groups associated with the presence of phage—

phage plasmid primase activity, DNA methyltransferase activity,
and type I restriction modification. Strains from MSK16 were

unique, and these strains harbored a subset of gene groups

associated with motility but also several gene groups associated

with the presence of phage. Collectively, the pattern of gene

group presence/absence defined by the Spectral Tree distin-

guished E. rectale strains hierarchically. Strains from MSK22

and MSK17 were more like each other than strains from

MSK16, MSK13, and MSK9, and strains from MSK13 and

MSK9 were more similar than strains from MSK16.

The statistically deduced patterns of gene group presence/

absence motivated testing E. rectale isolates from these donors
Cell Systems 16, 101167, February 19, 2025 9
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Figure 5. Functional and evolutionary characterization of subspecies phylogeny

(A) Clusters of Eubacterium rectale strains from the Spectral Tree (dendrogram). Branches are colored by strain cluster and are labeled by the donor from which

they were isolated (MSK indicates Memorial Sloan Kettering Hospital). Number in parenthesis below each donor is number of strains. Heatmap shows gene

groups that are significantly differentially abundant between strains defined by the Spectral Tree. Functional annotations of gene groups defining each cluster (red

boxes) are shown in text. Highlighted annotations reflect gene groups shared among strains from MSK22, MSK17, and MSK16.

(legend continued on next page)
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for their motility. Isolates were tested for their ability to swim in

BHIS media (STAR Methods). Six strains, three from each major

cluster in Figure 5A, were grown anaerobically for 48 h, vortexed,

then observed for 180 min (Figure 5B, top). After 24 h of growth,

cultures inoculated from strains of MSK22 and MSK17 were uni-

formly turbid, illustrating the robust motility of E. rectale strains,

while those inoculated with strains from MSK9 exhibited a large

pellet with clear inoculum. The culture inoculated with strains

derived from MSK16 exhibited a phenotype following their

pattern of OGG presence/absence—pellet formation with uni-

form turbidity—illustrating the compromised ability to swim,

likely due to the absence of the basal body and other key flagellar

and motility components (Figure 5B, middle). The OD600 mea-

surements of each culture after vortex were in accord with the

phenotypes expected from the pattern of gene group pres-

ence/absence for each strain (Figure 5B, lower). Findings in

liquid media were also consistent with motility tests performed

in solid agar (Figure S12). These results demonstrated that the

subspecies phylogeny among E. rectale strains inferred from

the Spectral Tree manifest as biologically significant differences.

A previously published analysis of E. rectale strains demon-

strated that a majority of the clade contained motility genes,

excepting a single European subspecies, thereby illustrating

that motility is a well-conserved trait among E. rectale.38 Thus,

our result suggested that subspecies phylogeny associated

with phage infection may correlate with strain differences in

well-conserved areas of bacterial genomes. We examined the

conservation pattern of the 12 annotated gene groups that

were absent in E. rectale strains isolated from donors MSK16,

MSK13, and MSK9 but present in strains isolated from donors

MSK22 and MSK17 across the entire Spectral Tree. We found

that in the phylogenetic local vicinity of E. rectale, the 12 gene

groups were well conserved, found in 100% of strains. As we

expanded from this vicinity and progressively included more

phylogenetically distant bacteria, we found that the 12 gene

groups maintained their high conservation, spanning a fractional

presence of 20% to greater than 50% across all 7,047 bacteria

within UniProt (Figure 5C). These results highlighted that

phage-related differences among strains associated with varia-

tion among highly conserved E. rectale genes.

We then performed a more systematic analysis, focusing on

five species outside of E. rectale that were represented by

more than 20 strain-level variants where differences among

gene groups were significant with respect to effect size (log-

fold-change greater than 1). These species were B. uniformis,

Phocaeicola vulgatus,M. gnavus, Bacteroides thetaiotaomicron,

and Coproccocus comes, comprising 214 strains in total. We
(B) Evaluating motility of E. rectale strains derived from different donors. BHIS

180min. OD600 measurements are taken from the top of the culture. Pictures show

MSK16 and MSK9—and a negative control of media alone after 24 h of culture.

average OD600 value, contours reflect one standard deviation from average OD6

(C) The fraction of taxa (x axis) containing the 12 annotated OGGs (circles) absent i

Tree (y axis). y axis is ordered from the deepest cluster containing the reference

(D) Left: Spectral Tree for given species. Leaves are labeled by donors from wh

indicated in parenthesis. Text along branches indicate functional annotation of sig

indicates annotations associated with phage presence, and black text along dau

‘‘phage-suppressed"OGGs. Right: all 10,177 OGGs are ordered by their percentil

their fractional presence (y axis) (gray distribution). The density of OGGs for a pa

OGGs—OGGs, which are observed in mutual exclusion of phage-related OGGs
found that the most conserved gene groups defining subspecies

phylogeny for all species were related to phage physiology (Fig-

ure 5D, left). Other features included gene groups related to hor-

izontal gene-transfer and inter-cellular competition, among

many other annotations (Table S5). These results were consis-

tent with previous metagenomic-based analyses of subspecies

variation in human gut microbiomes illustrating the importance

of phage in mediating strain-level variation.12 We also found

that the presence of phage elements correlatedwith the absence

of gene groups that are phylogenetically conserved. We term

‘‘phage-suppressed’’ OGGs as gene groups whose absence

was shared with the presence of phage-related gene groups.

These groups of OGGs were lost in coordination with the incor-

poration of phage genomic elements. Across all species that

were analyzed, the phage-suppressed OGGs were predomi-

nantly within the top half of gene groups ranked by fractional

abundance across all 10,177 OGGs defining bacterial pro-

teomes in UniProt. Additionally, several phage-suppressed

groups were present in greater than 20% and up to 80% of all

taxa in UniProt (Figure 5D, right), illustrating their broad conser-

vation across the kingdom Bacteria. These results show that

subspecies phylogeny is markedly associated with a shared his-

tory of phage exposure among groups of donors and manifests

as functionally relevant changes in clusters of strains due to vari-

ation among conserved portions of bacterial genomes. Thus, the

origin of subspecies phylogeny in our strain bank was found to

be primarily environmentally driven.

Putting together the results of Figures 4 and 5 illustrated that

the Spectral Tree resolved structured phylogeny below the level

of species in a functionally and evolutionarily relevant manner.

Our findings therefore highlight that the Spectral Tree is a more

complete phylogenetic description of bacterial strains, moti-

vating using the Spectral Tree to explore genotype-phenotype

relationships.

Using the Spectral Tree to understand genotype-
metabolic relationships
Wenext tested whether the Spectral Tree could be used to relate

the genotype of individual strains with their metabolism—an

important phenotype within the context of the gut ecosystem.

To address this idea, we studied species where there were at

least 20 representative strains in our strain bank for statistical po-

wer. In total, this amounted to 356 strains across 11 species.

Instead of describing each strain by their genome—a standard

approach in evaluating genotype-phenotype relationships—we

coarse-grained the description of strains to their branching

pattern in the Spectral Tree. Since strains are linked in the
media is inoculated with strains, grown for 48 h, vortexed, then observed for

cultures of six different strains—three fromMSK22 andMSK17 and three from

OD600 (y axis) versus time for each strain in triplicate is shown. Solid lines are

00 value.

nMSK16,MSK13, andMSK9 out of all taxa within a given cluster in the Spectral

E. rectale proteome (top) to the shallowest cluster (bottom).

ich strains were collected, and number of strains collected for each species

nificantly differentially abundant OGGs between daughter clusters. Orange text

ghter cluster indicates functional annotations of OGGs that are absent termed

e rank of fractional presence in the UniProt database (x axis) and plotted against

rticular percentile rank is shown in the yellow distribution. Phage-suppressed

—for each species are plotted along the gray distribution in blue circles.
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Figure 6. Using the Spectral Tree to relate strain genotype with metabolic capacity

(A) Workflow for defining SLEs for taxa.

(B) Schematic for training LASSOmodel on SLE designation to predict metabolite concentration, and log2 fold-change (log2FC) of acetate concentration relative

to a standard in blank media without bacterial culture shown as an example. Resulting models are termed ‘‘SLE-LASSO models.’’

(C) Predicted relative concentration for acetate (x axis) versus measured relative acetate concentration (y axis) for 356 strains spanning different species across

decreasing values of LASSO penalty values (lÞ:
(D) (Bottom) Value of LASSO penalty term (l, x axis) versus predictive capacity of SLE-LASSO model adjusted by sparsity of model (adjusted r2, y axis) for each

metabolite (blue curves). Solid yellow dots signify the peak predictive capacity of an SLE-LASSOmodel for a givenmetabolite. (Top) Number of models with peak

predictive capacity (y axis) versus value of LASSO penalty term (l, x axis).

(E) Value of LASSO penalty term (x axis) versus the fraction of branches in the Spectral Tree that distinguish subspecies phylogeny used in the SLE-LASSOmodel

for a metabolite. Gray distribution reflects the collection of SLE models across all metabolites, and black solid line is the average fraction.

(F) Number of models (y axis) versus the fraction of branches in the Spectral Tree defining subspecies phylogeny within the best-performing SLE-LASSOmodels

(yellow dots in D).
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Spectral Tree by a common root, the branching pattern of each

strain could be used as a unique ‘‘barcode’’ of statistically in-

ferred evolutionary lineage. We therefore termed this barcode

a ‘‘spectral lineage encoding’’ (SLE) (Figure 6A). Next, we

reasoned that training statistical models on patterns of SLE de-
12 Cell Systems 16, 101167, February 19, 2025
scriptions of strains would be a way to test whether phylogenetic

information could be directly related to metabolic phenotype.

Thus, we trained LASSOmodels that used the SLE for each bac-

terial strain as input and the relative difference in metabolite con-

centrations for all metabolites that we profiled as output
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Figure 7. Inter-donor variation between strain-level variants drives predictive capacity of SLE-LASSO models of strain metabolism

(A and B) The predictive capacity of SLE-LASSOmodels when considering a uniform LASSO penalty value across all species for each metabolite (A) or a LASSO

penalty term tuned to optimize the predictive capacity for each species/metabolite pair (B).

(C) Mean predictive capacity of SLE-LASSO models in (A) (‘‘uniform l’’) or (B) (‘‘tuned l’’) averaged across metabolites for each species.

(D)Median predictive capacity for SLE-LASSOmodels ofBlautia luti (left) andBacteroides thetaiotaomicron (right) strains for eachmetabolite (dots) wheremodels

were trained using either a uniform LASSO penalty term across all species for a given metabolite (‘‘uniform l) or a LASSO penalty term tuned for the specific

species/metabolite pair (tuned l). p values between violin plots for each species are computed by a Mann-Whitney rank-order test.

(legend continued on next page)
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(Figure 6B). To ensure an out-of-sample prediction for all strains,

we computed the spectral distance of a randomly chosen 75%

of the 356 strains within the Spectral Tree as a training set.

Next, we assigned SLEs to all strains in the training set, trained

a LASSOmodel, and validated the LASSOmodel on the remain-

ing 25% of strains. We then repeated these steps four times

across five different repartitions of the dataset (Figure S13)

(STAR Methods).

Generally, in training LASSO models, a penalty term (also

known as a ‘‘regularization parameter’’) is used to constrain

the number of coefficients in the resulting model. The larger

the penalty term, the fewer coefficients are used for the predic-

tive capacity of the model. In other words, the penalty term is

used to ‘‘coarsen’’ the model. We found that as the LASSO pen-

alty term was reduced, the SLE-LASSO models became pro-

gressively better at predicting bacterial metabolism at finer

scales of phylogeny. For instance, when training models to pre-

dict acetate metabolism, using a penalty term of 1 collapsed all

predictions onto the acetate concentration averaged across all

strains (Figure 6C, top left). As the penalty term was decreased,

the range of predicted acetate levels increased (Figure 6C, top

right and bottom left). At a penalty term value of 10�2, we found

that the predictive capacity of the SLE-LASSO models differen-

tiated strain-level differences between acetate consumers and

producers (Figure 6C, bottom right and inset). Thus, these results

motivated the idea that lowering the LASSO penalty terms pro-

gressively incorporated deeper branches of the Spectral Tree,

thereby allowing SLE-LASSO models to increasingly consider

strain-level genomic differences. Consistent with this result, we

also observed that if the training set to the SLE-LASSO models

was missing coarse phylogenetic structure, e.g., branches of

entire species that define sets of strains, the SLE-LASSOmodels

were unable to predict the average metabolic capacity of the

species irrespective of the penalty value (Figure S14). These re-

sults motivated the hypothesis that the LASSO penalty termmay

be a tuning parameter that is directly related to phylogenetic

structure as opposed to a hyperparameter that restructures

the genomic neighborhoods of strains in a metabolically aware

manner akin to a deep-neural network. We therefore next inves-

tigated the relationship between (1) the LASSO penalty term,

(2) the predictive capacity of the SLE-LASSO models, and (3)

the scale of phylogeny being considered in the models for all

metabolites.

For each metabolite, we trained and validated SLE-LASSO

models across a range of penalty terms. We found that when

adjusted for model parsimony, the best predictive capacities

for our models (calculated as adjusted r2 values) occurred be-

tween a penalty term value of 10�0.5 and 10�1.5 (Figure 6D;

Table S6). Importantly, we also found that as the penalty term
(E) Relative concentration of phenylacetate (y axis) versus predicted relative conc

the penalty term is tuned to the species metabolite/pair for strains of B. thetaiota

(F) Architecture of Spectral Tree for strains of Bifidobacterium breve (top) and B.

(G) Adjusted R2 values for all 7,040 repartitioned SLE-LASSO models from (B) (

between donors (see STAR Methods for definition). p values in quadrants reflect

Bonferroni correction (see Figure S20 for workflow).

(H and I) Number of strain pairs (y axis) versus distance between strain pairs ba

belonging toB. breve (orange distribution) andB. thetaiotaomicron (green distribu

donor, yellow distribution) or different donors (‘‘inter-donor,’’ purple distribution).
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continued to increase beyond these values, the predictive ca-

pacity of our models decreased (Figure S15A). These observa-

tions demonstrated that there was a range of optimal penalty

term values that (1) balanced the degree to which models should

be coarse-grained for achieving optimal predictive capacity of

metabolites and (2) prevented overfitting or underfitting of

models relative to the training set used to train the models. To

relate this result with scale of phylogeny being considered in

the models, we investigated how defining the optimal penalty

value for our SLE-LASSO models affected the degree to which

subspecies phylogeny was being considered by the models.

To address this, we quantified the number of Spectral Tree

branches defining subspecies phylogenetic clusters that were

being considered by the model at the penalty term associated

with the peak predictive capacity for each metabolite. We found

that as the penalty term decreased, the fraction of Spectral Tree

branches defining subspecies phylogeny being used in the

model increased (Figure 6E). We found that nearly all peak

predictive SLE-LASSO models incorporated Spectral Tree

branches that defined clusters of subspecies phylogeny with

non-zero coefficients (Figures 6F and S15B). As an example,

interrogating the SLE-LASSO model associated with the peak

predictive capacity for acetate illustrated the presence of several

non-zero LASSO coefficients derived from considering subspe-

cies phylogenetic structure in the Spectral Tree (Figure S16).

These results demonstrated that by resolving subspecies phy-

logeny, the Spectral Tree can enable learning genotype-meta-

bolic relationships for individual strains. However, we noted

that the range of predicting strain-level metabolic capacity per

our SLE-LASSO models was large (Figure S17). For instance,

butyrate could be predicted up to an adjusted R2 value of 0.84

while many amino acids could be predicted only up to an

adjusted R2 value of <0.2 (Figure 6D). We therefore sought to

better understand why the predictive capacities of certain me-

tabolites were markedly better than others.

First, we found that SLE-LASSO models using the penalty

parameter associated with the peak predictive capacity deter-

mined by considering all species exhibited a poor capacity over-

all to predict the metabolism of strains within specific species

(Figure 7A; Table S7A). Across all metabolites, a majority of pre-

dictive capacities for a given species were close to or less than

zero, highlighting the paucity of predictive power of our SLE-

LASSO models on a per-species basis. In contrast, we found

that if we treated the LASSO penalty value as a hyperparameter

and tuned each species-by-metabolite relationship separately,

the predictive capacity of strain metabolism within species

increased for all species on average (Figures 7B and 7C;

Tables S7B and S7C). Moreover, we found that the resulting dis-

tribution of penalty terms tuned for each species/metabolite pair
entration (x axis) where predictions are made by SLE-LASSOmodels for which

omicron (top) and B. luti (bottom).

thetaiotaomicron (bottom).

y axis) versus the separability index (x axis) measured by metabolic variation

statistical significance of enrichment or depletion by Fisher’s exact test using

sed on the OGG profile of a strain (x axis). (H) Distributions shown for strains

tion). (I) Distributions shown for all pairs of strains sharing the same donor (intra-
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included a substantial fraction of Spectral Tree branches that

defined strain clusters at the scale of subspecies phylogeny (Fig-

ure S18). Consistent with this finding, setting the coefficients of

SLE-LASSO models corresponding to subspecies phylogeny

to zero significantly reduced the predictive capacity of the

models (Figure S19). This result therefore illustrated that merely

knowing the species designation of strains was insufficient for

predicting their metabolic capacity; rather, it was necessary to

incorporate subspecies phylogenetic information even when

treating each species/metabolite pair separately with respect

to the LASSO penalty terms.

We next found that the increased capacity to predict strain-

level metabolic phenotype was dependent on the specific spe-

cies/metabolite pair and not driven by a stereotyped class of me-

tabolites. For example, we compared the SLE-LASSOmodels of

Blautia luti and Bacteroides thetaiotaomicron for all metabolites

using either a uniform penalty term across all species or a penalty

term tuned for each species/metabolite pair. As expected from

the results shown in Figure 7B, we found that the predictive ca-

pacities for both species significantly increased (Figure 7D).

However, the metabolites with the highest predictive capacities

were different for each species—the predictive capacity of

aspartate metabolism for strains of B. luti exhibited an R2 of

greater than 0.25, while metabolites associated with an equiva-

lent predictive capacity for strains of B. thetaiotaomicron were

propionate, cysteine, phenylacetate, acetate, alanine, and lysine

(Figures 7D and 7E).

Collectively, these findings illustrated two results. First, by

treating the LASSO penalty term as a hyperparameter that can

be tuned for a given species and metabolite of interest, strain-

level metabolic capacity can be learned in specific cases of spe-

cies/metabolite pairings. Second, the ability to learn strain-level

metabolic capacity may not be generally possible across spe-

cies or metabolites, suggesting either the need for increased

sampling or that the biology underlying the metabolic capacity

of species may originate from variation outside of genomic

information.

However, the results described above also motivated a key

question: if the ability to predict strain-level metabolic capacity

is dependent on the specific species/metabolite pairing, is there

any measure or descriptor that could inform whether the meta-

bolic capacity of a strain can be learned from SLE-based statis-

tical models? To address this question, we turned to two spe-

cies—Bifidobacterium breve and B. thetaiotaomicron—as a

case study because the predictive capacities of SLE-based

LASSOmodels are uniformly poor for B. breve but are predictive

for certain metabolites for B. thetaiotaomicron. We found that all

B. breve strains were collected from the same donor, resulting in

a ‘‘flat’’ Spectral Tree architecture below the level of species (Fig-

ure 7F, top). In contrast, strains of B. thetaiotaomicron were

collected from different donors and manifest in a structured

Spectral Tree architecture below the level of species (Figure 7F,

bottom).

This result motivated the hypothesis that strain-level variants

collected from different donors are genetically more diverse

than strain-level variants collected from the same donor, thereby

introducing more genetic variation that can be captured by the

Spectral Tree to define subspecies phylogeny and therefore

learn better SLE-based models of strain metabolic capacity.
We tested this hypothesis by investigating SLE-LASSO models

from Figure 7B and interrogated the role of metabolic variation

within a single donor versus between different donors on influ-

encing the resulting predictive capacity of the models. The pre-

dictive capacity of each strain/metabolite pair shown in Figure 7B

was the median predictive capacity of 20 separate models, each

trained on a different repartitioning of the dataset. Thus, the total

number of models reflected in Figure 7B was 7,040 (20 reparti-

tions, 32 metabolites, 11 species). First, we stratified the test

set for each metabolite-species-repartition combination by

donor. Second, we calculated the mean and standard deviation

of relative metabolite concentrations for strains within each

donor. Third, we defined the standard deviation of the means

as inter-donor metabolic variation, and we defined the mean of

the standard deviations as intra-donor metabolic variation.

Thus, the ratio between inter- and intra-donor metabolic varia-

tion was a measure of metabolic separability by donor (Fig-

ure S20) (STAR Methods). We term the log2 fold-change of this

ratio the ‘‘separability index.’’ A separability index of greater

than 1 indicated that relativemetabolite concentrationwas sepa-

rable by donor, and a separability index of less than 1 indicated

metabolic variability across donorswas not separable. Using this

metric, we found there to be a statistically significant enrichment

for higher predictive capacity in SLE-LASSO models where the

relative metabolite concentrations in the test set were separable

by donor (Figure 7G; Table S8). This finding suggested that by

collecting strains across different donors, we would increase

the likelihood of introducing metabolic variability manifest

through differences in strain genomes, motivating comparing

the genomic composition of strains collected from different do-

nors and a single donor. Analyzing the OGG content of strains,

we found that inter-donor strain-level variation was significantly

greater with respect to genomic diversity relative to intra-donor

strain-level variation (Figures 7H and 7I). Together, these results

illustrated that one measure indicative of the capacity to learn

strain-level metabolic qualities from genomes is the presence

of subspecies-level structure in the Spectral Tree—a property

we found to be more likely when sampling strains of the same

species from different donors. We discuss the implications of

this finding with respect to informative sampling of bacterial

strains in the discussion.

Considerations for creating and using Spectral Trees
We outline two sets of considerations regarding our work. The

first is with respect to elucidating subspecies phylogeny using

the Spectral Tree. The second is with respect to using the Spec-

tral Tree to relate strain genotype with phenotype.

With regard to resolving subspecies phylogeny within our

strain bank, we note two important aspects that enabled our

result. First, the Spectral Tree created from the UniProt database

incorporated a wide breadth of diversity, encompassing bacte-

rial proteomes across a range of econiches, some of which

included the econiche of the human gut. Moreover, we found

that this diversity was crucial for constructing an accurate

Bayesian prior to contextualize variation among strains in our

strain bank. However, we note that we currently do not have a

quantitative metric for determining the extent of econiche diver-

sity that is necessary to include in order to resolve subspecies

phylogeny. As such, a limitation of our approach is being unable
Cell Systems 16, 101167, February 19, 2025 15
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to quantitatively define the extent of background diversity

needed for resolving subspecies phylogeny within a strain

bank. Second, by using OGGs as the set of features to describe

a proteome, we captured markedly more genome space than

canonical descriptions of strains based on 16S or sets of gene

markers. The rationale behind expanding genomic descriptors

of bacterial phylogeny from 16S to sets of marker genes, and

ultimately bac120—a set of 120 genes that define phylogenetic

relationships between bacteria—was to balance ‘‘signal-to-

noise’’: capture enough genomic variation to robustly define

phylogeny while avoiding saturation of genomic variation with

highly fluctuant information. In this sense, we note that though

the Spectral Tree uses the whole proteome as input, spectral

decomposition organizes the variation into hierarchical scales

of signal such that unstructured variation (e.g., statistical pat-

terns that cannot be distinguished from noise) is placed at the

bottom of the eigenspectrum. The rationale for using a more

high-content feature set for describing strain genomes is not

new as others have employed comparative methods across

bacteria at the level of amino acid resolution or in defining

bacterial ‘‘pangenomes’’—conserved genomic elements across

phylogenetically similar strains.39,40 A more detailed explanation

comparing pangenome analysis to the construction of Spectral

Trees can be found in supplemental experimental procedures

Section 3 (Figure S21). These approaches suggest that there

may be a degeneracy of different sets of features that effectively

access information across the whole bacterial proteome. The

practical implication of these two considerations is that when

applying our framework to new strain banks, it is important to

ensure that (1) the Spectral Tree is created from a diverse set

of proteomes and (2) that the proteomes are described in a suf-

ficiently high-content manner.

With regard to using the Spectral Trees to relate bacterial ge-

notype with phenotype, we note three caveats to consider. First,

the SLE-based approach we developed presumes a genetic ba-

sis for phenotype that can be accurately captured in OGGs. It is

possible that the phenotype of interest may be reflected in other

descriptions of genetic information—i.e., amino acid changes

within protein sequences belonging to the same OGGs and

insertion/deletion (‘‘indels’’) mutations within genes—or in non-

genetic mechanisms of action like transcriptional changes, inter-

actions with other microbes, or interactions with the environ-

ment. In either of these cases, our framework will not produce

a predictive model of phenotype. Second, while the set of

OGGs differentiating strains from each other was associated

with strain-level metabolism, understanding the biological

mechanism underlying our results is immensely challenging

due to the unannotated nature of OGGs. The analysis we per-

formed identifying OGGs that separated layers of the Spectral

Tree showed that while OGGs differentiating coarse phylogeny

(phylum to species) were annotated to an extent above 80%,

greater than 40% of OGGs differentiating individual strains

were unannotated (Figure S22A). Moreover, metabolic variability

captured by the Spectral Tree is associated with OGGs that are

annotated by metabolic functions at a phylum-to-species level

but are broadly unannotated at the level of subspecies phylog-

eny (Figures S22B and S22C). Therefore, we note that validating

the OGGs responsible for determining strain-level metabolic ca-

pacity or other phenotypes within species will first require per-
16 Cell Systems 16, 101167, February 19, 2025
forming precise experiments to functionally annotate the candi-

date OGGs and then understand how their variation affects

bacterial metabolism. As tools for genetic manipulation in bacte-

ria outside of well-studied model organisms are limited in their

development, we anticipate this remaining a significant chal-

lenge for the immediate future. Third, the capacity to use the

SLE-LASSOmodels to predict metabolic phenotypes of subspe-

cies phylogeny is, by definition, dependent on capturing phylo-

genetic diversity in the training set for the model. The reason

for this is because the SLE-LASSO model is a direct representa-

tion of the statistical geometry of genomic variation across bac-

teria. Our results have shown that this geometry reflects phylo-

genetic scales of organization. Therefore, if the training set is

missing a portion of coarse phylogenetic structure (e.g., an entire

species), the resulting SLE-LASSOmodel will not be able to pre-

dict strain-level metabolic capacities for the missing species. Of

note, the SLE-LASSO models are a fundamentally different sta-

tistical architecture than other types of models that could be

used like artificial neural networks (ANNs), where the statistical

geometry of variation, and therefore phylogenetic relationships,

are contorted to be phenotypically aware.

DISCUSSION

The importance of individual strains inmediating gut microbiome

function requires new frameworks for their description beyond

merely taxonomic definitions. Here, we showed that co-evolu-

tionary patterns learned from a large diversity of strains across

the bacterial kingdom creates a natural, data-driven, and useful

description of gut commensal strains, revealing the existence of

phylogenetic structure below the level of species. Importantly,

our findings demonstrate how leveraging biological diversity

reflective of many diverse and unrelated environments can

expose constraints on genomic variation within a single environ-

ment. As our framework is not specific to gut bacteria but can be

applied to strains isolated from any environment, we pose that

the construct we have developed—the SLE—may be a generally

useful schema for describing and studying bacterial strains.

The intra- and interpersonal variation in the structure of human

gut microbiomes has been extensively described.41–43 The de-

gree to which this variation reproducibly derives from external

factors has remained a subject of discussion with recent studies

attempting to control for environment—like diet or spatial geog-

raphy—to ‘‘normalize’’ structural changes observed in human

cohort studies.44–46 Our data suggest that a history of phage

infection among hosts can lead to structured, non-random mi-

crobiome changes between groups of humans that manifest in

subspecies phylogeny. While we demonstrated how these

changes lead to different behaviors at the scale of individual bac-

teria, the functional consequences of such strain-level variation

at the scale of the whole microbiome remain to be characterized.

Though a majority of the phage-suppressed OGGs we identified

were phylogenetically conserved, the strains nevertheless per-

sisted in the gut microbiome of donors. This suggests that

perhaps changes in conserved genomic areas within individual

bacteria can be tolerated without a substantial fitness decrease

when considered within the context of the entire gut ecosystem.

The recent shift toward genomic analysis of bacteria within the

context of whole microbial ecosystems will enable a better
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definition for a ‘‘null hypothesis’’ of genomic constraint within in-

dividual strains.

From a practical perspective of learning about the metabolic

capacity of individual strains, it has been previously argued

that because strain-level genomic variation does not obviously

map to strain-level metabolic variation, it is necessary to meta-

bolically profile each and every new strain that is collected.20

Our results suggest a substantially different point of view.

As more genetically diverse bacterial strains are collected,

sequenced, and metabolically phenotyped, including new me-

tabolites that are discovered to be important, the constructs

developed here—the Spectral Tree and SLE-based predictive

models—could be used to learn genotype-metabolic relation-

ships of strain-level variants. Indeed, as our results demonstrate,

achieving a reasonable predictive capacity even for a subset of

metabolites required tuning our statistical models in a manner

specific to the species-metabolite pairing. However, our findings

also showed that increasing the genetic diversity of subspecies

phylogeny is directly related to creating predictive statistical

models of metabolic capacity. Thus, our results highlight the pre-

dictive power in having a strain bank comprising diverse subspe-

cies phylogeny. How can this practically be achieved? As we

showed that genetic diversity in subspecies phylogeny origi-

nates from the econiche of individual donors (see Figures 4C

and 7F), we pose that a useful sampling strategy is constructing

strain banks across a broad set of donors rather than deeply

sampling strains from individual donors. Our data suggest that

this approach to sampling—shallow sampling across many do-

nors—will introduce the necessary scale of genomic variation

for learning genotype-phenotype relationships among strain-

level variants of the same species. We acknowledge that an

important caveat is that strain metabolism can change as a func-

tion of culture conditions; therefore, it will be important in the

future to test whether coordinated changes in bacterial meta-

bolism across culture conditions also follow co-evolutionary pat-

terns as described here. However, because the Spectral Tree is

an object capable of incorporating new sequences and as there

are many ongoing efforts to understand bacterial genotype-

phenotype relationships at the scale of individual strains, the

Spectral Tree could be a unifying dynamic framework for per-

forming comparative phylogenomics for arbitrary phenotypes

of interest.

What fundamental properties underlie the utility of describing

strains by their co-evolutionary signature? Unlike engineered

systems, existing or ‘‘extant’’ biological systems arise from an-

cestors through the evolutionary process.47–51 Therefore, under-

standing how patterns of genetic interactions encode behaviors

is inextricably intertwinedwith defining commonalities and diver-

gences in molecular structure.30,52–57 Current statistical strate-

gies for parsing differences among genomes involve so-called

‘‘factorization’’ approaches that discover low-dimensional rep-

resentations of high-dimensional patterns of variation. Indeed,

the era of biological big data has seen an explosion in the use

of factorization methods.58 Such approaches are predicated

on a key assumption: the systems being interrogated are unre-

lated to each other. For evolved systems, ancestral relatedness

violates the assumption of system independence, demanding a

new formalism for comparative efforts. We reason that the SLE is

a useful descriptor of bacteria because it embeds hierarchical
scales of relatedness across the evolutionary record, simulta-

neously capturing both broad phylogenetic differences and

fine-grained differences within species. The hierarchical nature

of the SLE as a descriptor therefore distinguishes variation

arising from ancient phylogenetic sources from functional differ-

ences reflecting recent adaptations (i.e., to individual human

hosts). This capacity to separate sources of variance is key for

creating accurate predictive models of biological behavior from

genome content.59 We anticipate that our approach is unlikely

to be the only applicable framework given the recent develop-

ment, implementation, and success of large language models

(LLMs) in characterizing evolutionary relationships among com-

plex biological systems.60,61 However, our findings show that

creating statistical representations of the evolutionary record

may lay an interpretable foundation for understanding and pre-

dicting idiosyncrasies of individual biological systems that

deviate from broad phylogenetic trends. Future studies applying

the concepts developed here to other evolved systems will test

this idea.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All collection of stool samples from healthy donors (leading to isolation of strains in Biobank) is covered under IRB 20-1384.

METHOD DETAILS

Genome sequencing of commensal strain bank
Fecal samples were obtained from 28 human donors that fell within the age range of 18 to 63 with a median age of 35. Donors were

selected as those with no antibiotic use in the past year, no known history of diabetes, colitis, autoimmune disease, cancer, pneu-

monia, dysentery, or cellulitis at time of consent. Institutions that approved protocols of fecal sample collection were Memorial Sloan

Kettering (MSK) and the University of Chicago under IRB 20-1384.

Fresh fecal samples were immediately reduced in an anaerobic chamber upon collection and diluted and cultured on various

growth media. Agar media types vary, but include any of following: Columbia Blood Agar, Brain Heart Infusion +Yeast, Brain Heart

Infusion + Mucin, Brain Heart Infusion + Yeast + Acetate or N-Acetylglucosamine, reinforced Clostridial Agar, Peptone Yeast

Glucose, Yeast Casitone Fatty Acids, Defined media M5. Colonies were selected and grown to be sufficiently turbid, 20% glyc-

erol/PBS stocks were created and stored in a -80�C freezer.

Colonies were selected for whole-genome sequencing based on pyro-sequencing of the 16S region which provides a rough es-

timate of genus level designation. For each donor, only colonies that had a sequence identity threshold of less than 99% from CD-Hit

(v. 4.8.1) were selected for whole-genome sequencing.62 Bacterial genomic DNA was extracted using QIAamp DNA Mini Kit

(QIAGEN) according to manufacturer’s manual. The purified DNA was quantified using a Qubit 2.0 fluorometer. 1000ng of each
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sample was prepared for sequencing using the QIAseq FX DNA Library Kit (QIAGEN). The protocol was carried out for a targeted

fragment size of 550bp. Sequencing was performed on the MiSeq or NextSeq platform (Illumina) with a paired-end (PE) kit in pools

designed to provide 1-3 million PE reads per sample with read length of 250 or 150 bp. Adapters were trimmed off with Trimmomatic

with following parameters: the leading and trailing 3 bp of the sequences were trimmed off, quality was controlled by a sliding window

of 4, with an average quality score of 15 (default parameters of Trimmomatic). Moreover, any read that was less than 50 bp long after

trimming and quality control were discarded. The remaining high-quality reads were assembled into contigs using SPAdes

(v3.14.0).63 The primers associated with 16S and whole genome sequences are as follows:
Primer pair Forward primer (5’–>3’) Reverse primer (5’–>3’) Trials

8F-1492R64,65 AGA GTT TGA TCC TGG CTC AG GGT TAC CTT GTT ACG ACTT 16S rRNA full gene length

533F-907R66,67 GTG CCA GCA GCC GCG GTA A CCG TCA ATT CMT TTR AGT TT Sanger Sequencing, V4-V5
Taxonomic classification of the assembled contigs was performed with the following methods: (a) Kraken2 (v2.1.1); (b) full/partial

length 16S rRNA gene from each isolated colony’s assembled contigs is extracted and input into BLASTn (v2.10.1+) to query against

NCBI’s RNA RefSeq database.68,69 Top five hits for each query are manually curated to determine an isolate’s identity, with identity

and coverage cutoff both at 95%; (c) GTDB-Tk (v1.5.1).70 Final taxonomy is determined by the consensus of the three methods. Any

colony that did not match initial pyro-sequencing taxonomy or lacked consensus are excluded from the commensal strain bank.

Metabolic profiling of strains
Strains were grown in Brain Heart Infusion media supplemented by cysteine (BHIS) until sufficiently turbid and then spun down. Su-

pernatant samples were frozen at -80�C prior to extraction. Samples were thawed and 4 volumes of extraction solvent (100%meth-

anol spiked with internal standards: D6-succinate (1 mM), D5-phenol (0.025 mM)) was added to the liquid sample (1 volume) in a mi-

crocentrifuge tube. The raw peak area of the internal standardswere averaged for peak normalization. Tubeswere then centrifuged at

-10 �C, 20,000 x g for 15 min and supernatant was used for subsequent metabolomic analysis. Compounds were derivatized with

pentafluorobenzyl bromide (PFBBr) as described by Haak et al. with the following modifications.71 The metabolite extract (100 mL)

was added to 100 mM borate buffer (100 mL, pH 10), 100 mM pentafluorobenzyl bromide in acetonitrile (400 mL), and n-hexane

(400 mL) in a capped mass spectrometry autosampler vial. Samples were heated in a thermomixer C (Eppendorf) to 65 �C for 1

hour while shaking at 1300 rpm. After cooling to room temperature, samples were centrifuged at 4 �C, 2000 x g for 5 min, allowing

phase separation. The hexanes phase (100 mL) (top layer) was transferred to an autosampler vial containing a glass insert and the vial

was sealed. Another 100 mL of the hexanes phase was diluted with 900 mL of n-hexane in an autosampler vial. Concentrated and

dilute samples were analyzed using a GC-MS (Agilent 7890A GC system, Agilent 5975CMS detector) operating in negative chemical

ionization mode, using a HP-5MSUI column (30m x 0.25mm, 0.25 mm; Agilent Technologies 19091S-433UI), methane as the reagent

gas (99.999% pure) and 1 mL split injection (1:10 split ratio). Oven ramp parameters: 1 min hold at 60 �C, 25 �C per min up to 300 �C
with a 2.5 min hold at 300 �C. Inlet temperature was 280 �C and transfer line was 310 �C. Data analysis was performed using

MassHunter Quantitative Analysis software (version B.10, Agilent Technologies) and the 50 targeted compounds—spanning

SCFA, BCFA, amino acid, aromatic, hydroxylated fatty acid, organic acid, indole, and additional subclasses—were identified by

comparison to authentic standardm/z, retention time and fragmentation pattern. Normalized peak areas were calculated by dividing

raw peak areas of targeted analytes by averaged raw peak areas of internal standards. The compounds chosen within the PFBBR

panel represent mechanisms known to be important in health and disease and were compiled from well-known mechanisms in liter-

ature and human, murine, and in vitro datasets collected within the Duchossois Family Institute (DFI).

Motility assay for E. rectale isolates
On day 1, BHISmedia (250mL dH2O, 9.25gBHIMedia, 2.5mL cysteine solution (1g cysteine in 10mL dH2O)) wasmade and aliquoted

into 50 mL conical tubes. Tubes were cycled into anaerobic chamber (Coy) 24 hours prior to the experiment. Caps on tubes were left

loose to allow for equilibration to the anaerobic environment and to release excess oxygen that may impact strain growth. On day 2, a

serological pipet was used to aliquot 5 mL BHIS into 20 mL conical tubes. Glycerol stocks of E. rectale strains were cycled into the

anerobic chamber; media was inoculated with strains in triplicate and placed in a 37� incubator in the anaerobic chamber. OD600 was

measured every 12 hours for 48 hours for each tube of inoculatedmedia by sampling from the top of the culture (taking 100mL from the

top 1mL of the 5mL cultures). During this time, each tubewas also observed for pellet formation. After 48 hours of incubation, cultures

were briefly vortexed to disseminate any pellet formed at the bottom of the tube. Samples were then collected from the top of each

culture (100mL from the top 1mL) and measured for their OD600 every thirty minutes for 180 minutes after vortex.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic trees of strain bank
The 16S sequence was isolated from each strain in the commensal strain bank. All 16S sequences were aligned with Mafft (v7.520)

creating a multiple sequence alignment of 1521 features and 335 unique sequences.72 This alignment was then input to phyml
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(v3.3.20200621) with these command options: ‘‘./phyml -dnt -mHKY85 -fe -o tlr –search SPR –r_seed 123456 –rand_start –n_rand_

starts 3 –no_memory_check –bootstrap -4 -i BB669_16S.phy’’.73 Redundant sequences were placed into the final tree by PhyML at

distance zero from their identical representative in the tree.

For Bac120, the fastafiles for each isolate was input to the gtdbtk (v2.3.0) ‘identify and align’ pipeline to create a multiple sequence

alignment with the Bac120 feature set comprising 5,035 features, with 311 unique sequences.74 This alignment was input to PhyML

(v3.3.20200621) with these command parameters: ‘‘./phyml -daa -mLG -fe -o tlr –search SPR –r_seed 123456 –rand_start –n_rand_

starts 3 –no_memory_check –bootstrap -4 -i BB669_Bac120.phy’’.73 Redundant sequences were placed into the final tree by PhyML

at distance zero from their identical representative in the tree.

Spectral distance and spectral groups
Spectral groups and spectral distance are based on Singular Value Decomposition (SVD), which is a matrix factorization method that

is a generalization of Principal Components Analysis (PCA). In the main text, we use the term ‘principal components’; we note that

principal components are also called ‘spectral components’, ‘modes of variation’, or ‘eigenmodes’ in the literature. These terms all

describe the same mathematical concept.

In general, SVD factorizes a real matrix M into three matrices according to the following equation:

M = USVT (Equation 2)

In Equation 2, U is termed the left-singular vector (LSV) matrix, S is a diagonal matrix of singular values, and V is termed the right-

singular vector matrix. IfM is a matrix of n systems (rows) described bym features (columns) where n <m;U is an n3 nmatrix where

rows are systems, columns are LSVs, and each entry is the contribution of a given system to an LSV;S is an n3mmatrix where the kth

diagonal entry is the kth singular value and all off-diagonal entries are 0; and V is anm3mmatrix where rows are features, columns

are RSVs, and each entry is the contribution of a given feature to an RSV. VT in Equation 2 is the transpose of V. A ‘spectral compo-

nent’ is the axis specified by the kth singular value and is the same as a ‘principal component’ from PCA, or ‘eigenmode’, or ‘mode of

variation’. The relationship between SVD and PCA is that PCA is performed only on either the rows or the columns of M. Therefore,

matrices U and S can be multiplied together to form P which are exactly the principal components of matrix M.

P = US (Equation 3)

As an example, the diversification trajectory shown in Figure 1A is a representative of the toy models we used to conduct our anal-

ysis. In Figure 1A, each taxon in the alignment is defined by a ‘genotype’ comprised of fourteen features that are either a ‘1’ or a ‘0’;

each taxon is created from a series of three sequential diversification events. Collectively, the alignment of taxa represents extant

diversity. The ancestral root is defined as a genotype of all ‘1’. The first layer of diversification from the ancestral root is defined

by two separate mutations in positions 1 and 2. The second layer of diversification mutates positions 3 through 6 to create sub-pop-

ulations. The third layer of diversification mutates positions 7 through 14 to create the extant diversity of taxa—eight taxa in total with

diverse genotypes.

PCA on the alignment of taxa yielded eight spectral components (Figure 1B). The extent to which each taxon contributes, or ‘pro-

jects’ onto each spectral component is shown in Figure 1C. When visualizing the contribution of each taxon onto each spectral

component, we observe that taxa arising from a common broad layer of diversification contribute similarly to the first two spectral

components while those arising from common finer layers of diversification (the second and third diversifications) contribute similarly

to deeper spectral components.

We translated our finding into a mathematical entity by computing the ‘spectral distance’ between two taxa. The spectral distance

between two taxa, i and j, on spectral component k is

SDk
ij =

���Pk
i � Pk

j

��� (Equation 4)

where Pk
i is the projection of taxa i onto spectral component k and Pk

j is the contribution of taxa j onto spectral component k. We

show an example of a pattern of spectral distances in Figure 1D where taxon ‘a’ is the reference. See that taxon ‘a’ and all other

taxa share the same projection onto the first spectral component. As such, the spectral distance between ‘a’ and any other taxa

is zero at spectral component 1. However, at spectral component 2, ‘a’ continues to share the same projection as taxa ‘b’, ‘c’,

and ‘d’, but taxa ‘e’, ‘f’, ‘g’, and ‘h’ have a different projection onto spectral component 2. Therefore, the spectral distance between

‘a’ and ‘e’, ‘f’, ‘g’, and ‘h’ is non-zero at spectral component 2 but still zero for ‘b’, ’c’, and ‘d’.

We next defined the ‘cumulative spectral distance’ between two taxa from the first to kth spectral component as

SD1:k
ij =

���Pk
i � Pk

j

��� + Xk� 1

r = 1

���Pr
i � Pr

j

��� (Equation 5)

where r denotes the index of each spectral component ‘shallower’ than spectral component k (i.e., each spectral component with an

associated singular value greater than the kth singular value). The cumulative spectral distance pattern of all pairs of taxa with taxa ‘a’

as one member of the pair is shown in Figure 1D. Computing the cumulative spectral distance across all spectral components for all

pairs of taxa illustrated a distinct tree-like pattern of partitioning between taxa.
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Our key finding from Figure 1D, that groups of sequential spectral components collectively described different layers of precedent

diversifications, motivated ‘renormalizing’ the spectral components into groups of spectral components harboring the same percent

data-variance (Figure 1E, left panel). Spectral component groups were thus defined based on the natural log10 difference between

subsequent singular values. The rationale behind this choice was to group together spectral components that are relatively similar in

their measure of percent-variance explained. To reduce effects at very small singular values, a pseudo-count of 1 is added to each

singular value. The difference between each subsequent singular value is expressed as

Dk = lnðSk� 1;k� 1 + 1Þ � lnðSk;k + 1Þ (Equation 6)

Then, the kth component was chosen to start a new spectral group only if the difference between the (k � 1)th and kth component

was greater than a manually chosen threshold q,

K = fk j Dk > qg (Equation 7)

For our in-silico toy models, the threshold q was 0 and therefore any drop in explained variance was defined as a new group of

spectral components. For real biological data described in the main text, the threshold q was chosen as 1.5 times the third quantile

of these natural log differences (q = 1.5 3 Q3(D)) as an approximation for selecting the only the largest drops in explained variance.

The spectral distance computed across spectral component groups was defined as

SDG
ij =

X
g˛G

���Pg
i � Pg

j

���
l2

(Equation 8)

where G is the total set of spectral component groups, g is a specific spectral component group within G, and j $jl2 denotes the l2
norm also known as the Euclidean distance.

Measuring the accuracy of Spectral Trees
We sought to assay the robustness of Spectral Trees to (i) size of the alignment and (ii) number of features describing each system in

the alignment. To perform this test, we used GoTree v0.4 (https://github.com/evolbioinfo/gotree) to create 7 separate reference

‘ground truth’ trees of taxa comprising either 16, 32, 64, 128, 256, 512, or 1,024 leaves.75 Each tree was then input into SeqGen v

1.3 (https://github.com/rambaut/Seq-Gen) which produced multiple sequence alignments (MSAs) where rows were leaves and col-

umns were features describing the leaves.76 SeqGen uses aMarkov process considering the branching pattern of the tree to create a

vector of features for each leaf. Elements of the vector are the characters ‘A’ and ‘T’, and the Markov process uses uniform proba-

bilities to flip between these characters at each branch point in the tree. For each of the 7 trees, we generated 7 MSAs with SeqGen,

where each MSA contained either 16, 32, 64, 128, 256, 512, and 1024 features. Thus, our analysis spanned 49 total MSAs.

We compared the topology of Spectral Trees against ground-truth defined by GoTree using an F-score—the harmonic mean of

precision and recall. Precision between two trees is defined as the proportion of predicted branches in the Spectral Tree that are

also in the ‘true’ tree. Recall is defined as the proportion of branches in the ‘true’ tree that are also in the Spectral Tree. F-score ranges

between 0 to 1, where 1 indicates complete identity between the two trees and 0 indicates no commonality between the two trees.

Our results are shown in Figure S3.We found that for themajority of the parameter space, the F-statistic was near 1. In the limit that

the number of features was less than the number of taxa, the F-statistic was uniformly near 0. This distinction in F-statistic based

on the parameter space arises from the scenario where the number of features is the limiting descriptor relative to the number of

taxa in the alignment. The physical interpretation of this regime is that the number of features describing each system is substantially

limited compared to the diversity of systems available for sampling. In this case, the information content of the set of features is ‘over-

written’ by the diversity of taxa, thereby erasing patterns of covariation originating from phylogenetic histories. A biological process

that is consistent with this regime is if the recombination rate is extremely high relative to speciation events—a scenario that has been

put forth as a plausible scenario for bacterial phylogenomic trends.31,77,78

Mutual Information (MI) calculation
We sought to elucidate where information regarding the different generations of diversifications lay across the set of spectral com-

ponents. We conducted this analysis by first defining sequential windows of spectral components across all nine spectral compo-

nents (components 1 to 3, 2 to 4,., 7 to 9). For each spectral window, we isolated the corresponding LSVs from theUmatrix defined

by Equation 2. This results in several sub-matrices defined by taxa on the rows, LSVs on the columns, and each entry being the contri-

bution of each taxon onto each LSV. For each sub-matrix constructed from U, we computed the Spearman correlation between all

pairs of taxa across the set of LSVs defined in the sub-matrix (‘spectral correlations’). As a concrete example, for the first spectral

window comprising spectral components 1 to 3, the U submatrix is defined as taxa (rows) and the first three columns (LSV1 to

LSV3) of the U matrix. Then, to compute the spectral correlations between all pairs of taxa within LSVs 1 to 3, we computed the

Spearman correlations between all pairs of rows in the sub-matrix. The result is a taxon-by-taxon spectral correlation matrix where

each entry is the Spearman correlation measured between two taxa across spectral components 1 to 3. Defining all taxon-by-taxon

spectral correlation matrices across all spectral windows creates a three-dimensional tensor, R, defined by taxa (rows), taxa (col-

umns), and spectral windows (z-axis) where each entry in the tensor is the spectral correlation between two taxa within a spectral

window. Separately, we created a second tensor, G, where rows are defined as taxa, columns are defined as taxa, the z-axis is

each generation (‘F0’, ‘F1’, ‘F2’, or ‘F3’), and entries in the tensor are a ‘1’ if two taxa are grouped within the same cluster at a given
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generation or ‘0’ if two taxa are not grouped within the same cluster at a given generation. We then computed the mutual information

(MI) between each face of the R tensor with each face of the G tensor. This computation interrogated the information shared between

spectral correlations between taxa and shared generational history. The MI was calculated as

MIðrjGÞ = HðrÞ �
�n0

N
Hðr0Þ + n1

N
Hðr1Þ

�
(Equation 9)

where H(r) is a measure of entropy and is defined as

HðxÞ = log2ðDbwÞ �
X
b

pðxbÞlog2ðpðxbÞÞ (Equation 10)

p(xb) is the proportion of pairs that fall into a particular bin within a distribution of xb values; we use a bin-width of 0.01 Dbw to

construct 200 bins across the distribution of correlation values ranging from -1 to 1; r1 is the distribution of spectral correlations

across taxonomic pairs that are descendants of the same ancestor; n1 is the number of pairs in r1; r0 is the distribution of spectral

correlations across taxonomic pairs that are not descendants of the same ancestor; n0 is the count of those pairs within each bin;

N is the total number of pairs. The meaning of this calculation is a measure of the extent to which knowing the distribution of spectral

correlations within a spectral window between two taxa indicates the shared ancestral history of two taxa.

Recreating the alignment
We leveraged a central property of Singular Value Decomposition (SVD) and PCA—their linearity—to isolate the statistical information

in distinct principal components. We can rewrite Equation 2 as

M =
X
k

skukv
t
k (Equation 11)

where sk is the kth singular value and uk and vtk are the kth left and right singular vectors. Each product that is being summed in Equa-

tion 11 is a rank 1 matrix because it produces a matrix from the individual vectors of ukv
t
k that is scalar multiplied by the number sk.

Using Equation 11, we recreated the original alignment shown in Figure 2A but only considering the information contained in principal

components 5 to 8. This process is shown in Figure 2F. Focusing on position 5 again, we found that the value of position 5 was

adjusted in the recreated alignment reflecting the separate, nested contexts of diversification (Figure 2G). Thus, by considering in-

formation contained across all principal components, the Spectral Tree accurately resolved both broad and context-dependent, finer

patterns of diversification.

Creating a Spectral Tree across UniProt
Construction of the full alignment of 7,047 UniProt reference proteomes annotated by 10,177 Orthologous Gene Groups was previ-

ously described in Zaydman et al.30 Then using this alignment, inferred trees of taxonomic relatedness (‘Spectral Trees’ in the main

text) are generated using four steps.

Step 1: A reference pairwise spectral distance matrix SD is created from Equation 8 for all pairs of taxa comprising a matrix M.

Step 2: A reference tree STref is generated via hierarchical clustering using the NeighborJoining method of phylogenetic tree

building79

Step 3: A set of 100 bootstrap trees is generated using steps 1-2. For each bootstrap, we replace the original matrixMwith a boot-

strap matrix Mboot by sampling features (columns) with replacement to maintain the original dimensions of M. This procedure first

generates a pairwise distance matrix SDboot from the matrix Mboot, and then generates a tree STboot using the NeighborJoining

algorithm.

Step 4: The reference tree STref and the bootstrap trees are then compared with transfer bootstrap expectation (TBE) as described

in Lemoine et al.80 TBE ranges from 0 to 1 where 0 indicates no similar branches in any bootstrap tree, and 1 indicates the exact

branch was found across all bootstrap trees.

The result of implementing these four steps generates a Spectral Tree where each branch of the tree has an associated measure of

support as defined by TBE. The Spectral Tree associated with the alignment in Figure 3A is shown in Figures 3A and 3C.

MI between Spectral Tree and phylogeny
We first created 100 ‘cuts’ of the tree where each cut is equally spaced across the depth of the tree. The first cut is defined at the root

of the tree forming a single cluster comprising all taxa; the last cut is defined at the terminal branches of the tree forming as many

clusters as there are taxa. For each cut, we form two membership vectors C and T where each element in the vector represents

a pair of taxa in the tree. C is a ‘1’ if two taxa belong to the same tree cluster and a ‘0’ if not. T is a ‘1’ if two taxa share a property

(i.e. belong to the same NCBI taxonomic designation or come from the same donor) and a ‘0’ if not. T is constructed for (i) all taxo-

nomic designations spanning ‘Phylum’ to ‘Species’ in NCBI, (ii) all taxonomic designations spanning ‘Phylum’ to ‘Species’ in GTDB,

and (iii) identity of donor. We then calculate the mutual information (MI) between C and T by the following equation:

MIðC;TÞ = HðCÞ + HðTÞ � H
�½C;T�t� (Equation 12)
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where HðxÞ = � P
b˛ 0;1

pðxbÞlog2ðpðxbÞÞ represents the Shannon entropy; pðxbÞ is the proportion of x that is equal to either ‘0’ or ‘1’

respectively in the distributions defined by either C or T. H(½C;T�tÞ is the joint entropy of C and T. The ‘Cumulative MI density’ plotted

in Figures 3B and 4D is defined by adding theMI for each subsequent deeper cut of the tree and dividing by the total sum ofMI across

all cuts. NCBI phylogenetic strings were mapped to NCBI taxonomy IDs following methods described in Zaydman et al.30

To measure uncertainty in MI, we bootstrapped the MI calculations. For a given MI between C and T, pairs of taxa (matched el-

ements of C and T) are sampled with replacement to the same total number of pairs. As an example, for 10 choose 2 pairs

(n=45), 45 pairs are sampled with replacement. This bootstrapping is performed 50 times and the cumulative mean ± 2 standard de-

viations of MI is plotted as ribbons.

Projecting CSB into the Spectral Tree
Genome sequences of all strains from the commensal strain bank were put through EggNog mapper (emapper 5.0) and their pro-

teomes were annotated for their OGG content across the same set of OGGs defining the UniProt reference proteome database

(n = 10,177).34,35 Any OGGmeasured in UniProt but not in the commensal strain bank was imputed as a ‘0’ count. From Equation 2,

we calculated the principal components defining covariation amongst the UniProt reference proteomes, PUniProt, as

PUniProt = DOGG VUniProt (Equation 13)

whereDOGG is the 7,047 UniProt reference bacterial proteomes annotated by their 10,177OGGs.We next definedBOGG as thematrix

of commensal strain bank strains annotated by their OGGs. Therefore from Equation 3,

PCSB = BOGG VUniProt (Equation 14)

where PCSB is a matrix of commensal strains (rows) by 7,047 principal components (columns) that collectively define the structure of

bacterial co-evolution in the UniProt database; each entry is the contribution of each commensal strain bank strain onto each prin-

cipal component.

SLE LASSO model training and validation
To establish a training and validation set, we selected all strains belonging to the 11 species with 20 or greater biological replicates

(n=356), and then further subset to 75% of those strains maintaining relative proportions of species groups (n = 267) with the remain-

ing 25% (n = 89) used as a validation set.

To train the LASSOmodel, we first generated a Spectral Tree from the training set and created an associated SLE matrix (SLEtrain,

267 rows by 266 columns) per the diagram in Figure 6A. Each strain was labeled by the fold-change (log2FC) of a specific metabolite.

We next estimated the linear coefficients relating SLEs with relative change in metabolite concentration across varying degrees of

regularization by

bw = argmin
w

ð ��SLEtrain w � yj2 + l
��wj1Þ (Equation 15)

where bw is the estimated coefficients, y is the log2FC of a metabolite, and l is the regularization parameter swept from 100 to 10�3.

We made predictions for the validation set in two steps. First, we found the nearest neighbor in the training set for each validation

strain using spectral distance. Second, we input the SLE of the nearest neighbors into the SLE-LASSOmodel trained via Equation 15.

Collectively, the out-of-fold predictions for one statistical resampling are described by

by = SLEtrain bw (Equation 16)

where by represents the out-of-fold predictions for a single fold; SLEtrain contains the nearest neighbors in the training set to each test

set strain; and bw are the SLE-LASSO coefficients learned from the full training set. This setup for making out-of-sample predictions is

similar to a K-nearest-neighbors model in that we use the features contained in our training set to make predictions. However, by

incorporating learnable weights for different sections of the Spectral Tree we tune the number of neighbors the prediction is averaged

across dependent on the phylogenetic context of each strain.

We repeat creating a training set, creating an associated Spectral Tree, creating an associated SLEtrain, and making out-of-fold pre-

diction across 20 repartitions comprising 4-folds per data partition across 5 re-partitions. This validation procedure guarantees 5 out-of-

fold predictions per taxa. We measure the performance of the model using the out-of-fold adjusted R2 for each repartitioning.

Separability of donor metabolic variation
Each of the 7,040 models trained in STAR Methods: SLE LASSO model training and validation—one model for each metabolite

(n=32), species (n=11), and repartition of train-test sets (n=20)—was tuned with regularization parameter l to maximize predictive

capacity (adjusted R2) and sparsity (maximum l for given maximum predictive capacity) for each metabolite-species pair. In Fig-

ure 7G, the maximized out-of-fold adjusted R2 per species was plotted on the y-axis. For each of the 7,040 out-of-fold test sets,

we calculated a ‘separability index’

log2

�
inter-donor variation

intra-donor variation

�
(Equation 17)
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where the numerator, ‘inter-donor variation’. is the standard deviation of the mean metabolite concentration for strains belonging to

each donor, and the denominator, ‘intra-donor variation’, is the mean of the standard deviations of metabolite concentration for

strains belonging to each donor. The ratio between inter-donor and intra-donor variation in metabolite concentrations defines

how separable the measured metabolite concentrations are by knowing which donor a strain of a given species is collected from.

To control for cases where there is very low or no measured metabolite for a given metabolite-species-resample test set a regula-

rization constant of 1
27
is added to both the numerator and denominator before taking the log2. The final separability index is defined as

the log2 value of the ratio. Values greater than 0 indicate the metabolite concentrations are separable by donor; values less than zero

indicate that the metabolic variability of strains within a donor is inseparable from the distributions of other donors.

Significance of enrichment or depletion for models relative to adjusted r2 value of models was performed with a Fisher’s exact test

with Bonferroni correction on a contingency table that tallies the number of models with positive versus negative predictive capacity

and positive versus negative separability index. The tallied values are compared against the expected counts under the null of no

association between predictive capacity and separability index. P-values are reported in Figure 7G.
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